2 resultados para Depression Severity Transition Probability Matrix

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequential Monte Carlo (SMC) methods are popular computational tools for Bayesian inference in non-linear non-Gaussian state-space models. For this class of models, we propose SMC algorithms to compute the score vector and observed information matrix recursively in time. We propose two different SMC implementations, one with computational complexity $\mathcal{O}(N)$ and the other with complexity $\mathcal{O}(N^{2})$ where $N$ is the number of importance sampling draws. Although cheaper, the performance of the $\mathcal{O}(N)$ method degrades quickly in time as it inherently relies on the SMC approximation of a sequence of probability distributions whose dimension is increasing linearly with time. In particular, even under strong \textit{mixing} assumptions, the variance of the estimates computed with the $\mathcal{O}(N)$ method increases at least quadratically in time. The $\mathcal{O}(N^{2})$ is a non-standard SMC implementation that does not suffer from this rapid degrade. We then show how both methods can be used to perform batch and recursive parameter estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider a network that is trying to reach consensus over the occurrence of an event while communicating over Additive White Gaussian Noise (AWGN) channels. We characterize the impact of different link qualities and network connectivity on consensus performance by analyzing both the asymptotic and transient behaviors. More specifically, we derive a tight approximation for the second largest eigenvalue of the probability transition matrix. We furthermore characterize the dynamics of each individual node. © 2009 AACC.