112 resultados para Defect states
em Cambridge University Engineering Department Publications Database
Resumo:
The formation energies of the oxygen vacancy and titanium interstitial in rutile TiO 2 were calculated by the screened-exchange (sX) hybrid density functional method, which gives a band gap of 3.1 eV, close to the experimental value. The oxygen vacancy gives rise to a gap state lying 0.7 eV below the conduction band edge, whose charge density is localized around the two of three Ti atoms next to the vacancy. The Ti interstitial (Ti int) generates four defect states in the gap, whose unpaired electrons lie on the interstitial and the adjacent Ti 3d orbitals. The formation energy for the neutral oxygen vacancy is 1.9 eV for the O-poor chemical potential. The neutral Ti interstitial has a lower formation energy than the O vacancy under O-poor conditions. This indicates that both the O vacancy and Ti int are relevant for oxygen deficiency in rutile TiO 2 but the O vacancy will dominate under O-rich conditions. This resolves questions about defect localization and defect predominance in the literature. © 2012 American Physical Society.
Resumo:
It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10 6-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect. © 2014 AIP Publishing LLC.
Resumo:
Hydrogenated tetrahedral amorphous carbon (ta-C:H) is a form of diamond-like carbon with a high sp3 content (>60%), grown here using a plasma beam source. Information on the behaviour of hydrogen upon annealing is obtained from effusion measurements, which show that hydrogen does not effuse significantly at temperatures less than 500 °C in films grown using methane and 700 °C in films grown using acetylene. Raman measurements show no significant structural changes at temperatures up to 300 °C. At higher temperatures, corresponding to the onset of effusion, the Raman spectra show a clustering of the sp2 phase. The density of states of ta-C:H is directly measured using scanning tunnelling spectroscopy. The measured gradients of the conduction and valence band tails increase up to 300 °C, confirming the occurrence of band tail sharpening. Examination of the photoluminescence background in the Raman spectra shows an increase in photoluminescence intensity with decreasing defect density, providing evidence that paramagnetic defects are the dominant non-radiative recombination centres in ta-C:H.