29 resultados para Decision Process

em Cambridge University Engineering Department Publications Database


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes an approach to structuring the make or buy decision process, basing it firmly in the context of an overall manufacturing strategy. The work has been carried out jointly by the University of Cambridge Manufacturing Engineering Group and Lucas Industries. A review of the current state of ideas surrounding the linked issues of vertical integration and make or buy decisions is presented. Important features of the approach include identification of core manufacturing capabilities, assessment of the role of technology in manufacturing, the development of a cost model to support make or buy decisions and a review of the strategic implications of varying degrees of vertical integration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work addresses the problem of estimating the optimal value function in a Markov Decision Process from observed state-action pairs. We adopt a Bayesian approach to inference, which allows both the model to be estimated and predictions about actions to be made in a unified framework, providing a principled approach to mimicry of a controller on the basis of observed data. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from theposterior distribution over the optimal value function. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Both decision making and sensorimotor control require real-time processing of noisy information streams. Historically these processes were thought to operate sequentially: cognitive processing leads to a decision, and the outcome is passed to the motor system to be converted into action. Recently, it has been suggested that the decision process may provide a continuous flow of information to the motor system, allowing it to prepare in a graded fashion for the probable outcome. Such continuous flow is supported by electrophysiology in nonhuman primates. Here we provide direct evidence for the continuous flow of an evolving decision variable to the motor system in humans. Subjects viewed a dynamic random dot display and were asked to indicate their decision about direction by moving a handle to one of two targets. We probed the state of the motor system by perturbing the arm at random times during decision formation. Reflex gains were modulated by the strength and duration of motion, reflecting the accumulated evidence in support of the evolving decision. The magnitude and variance of these gains tracked a decision variable that explained the subject's decision accuracy. The findings support a continuous process linking the evolving computations associated with decision making and sensorimotor control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work shows how a dialogue model can be represented as a Partially Observable Markov Decision Process (POMDP) with observations composed of a discrete and continuous component. The continuous component enables the model to directly incorporate a confidence score for automated planning. Using a testbed simulated dialogue management problem, we show how recent optimization techniques are able to find a policy for this continuous POMDP which outperforms a traditional MDP approach. Further, we present a method for automatically improving handcrafted dialogue managers by incorporating POMDP belief state monitoring, including confidence score information. Experiments on the testbed system show significant improvements for several example handcrafted dialogue managers across a range of operating conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The partially observable Markov decision process (POMDP) provides a popular framework for modelling spoken dialogue. This paper describes how the expectation propagation algorithm (EP) can be used to learn the parameters of the POMDP user model. Various special probability factors applicable to this task are presented, which allow the parameters be to learned when the structure of the dialogue is complex. No annotations, neither the true dialogue state nor the true semantics of user utterances, are required. Parameters optimised using the proposed techniques are shown to improve the performance of both offline transcription experiments as well as simulated dialogue management performance. ©2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective dialogue management is critically dependent on the information that is encoded in the dialogue state. In order to deploy reinforcement learning for policy optimization, dialogue must be modeled as a Markov Decision Process. This requires that the dialogue statemust encode all relevent information obtained during the dialogue prior to that state. This can be achieved by combining the user goal, the dialogue history, and the last user action to form the dialogue state. In addition, to gain robustness to input errors, dialogue must be modeled as a Partially Observable Markov Decision Process (POMDP) and hence, a distribution over all possible states must be maintained at every dialogue turn. This poses a potential computational limitation since there can be a very large number of dialogue states. The Hidden Information State model provides a principled way of ensuring tractability in a POMDP-based dialogue model. The key feature of this model is the grouping of user goals into partitions that are dynamically built during the dialogue. In this article, we extend this model further to incorporate the notion of complements. This allows for a more complex user goal to be represented, and it enables an effective pruning technique to be implemented that preserves the overall system performance within a limited computational resource more effectively than existing approaches. © 2011 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reinforcement techniques have been successfully used to maximise the expected cumulative reward of statistical dialogue systems. Typically, reinforcement learning is used to estimate the parameters of a dialogue policy which selects the system's responses based on the inferred dialogue state. However, the inference of the dialogue state itself depends on a dialogue model which describes the expected behaviour of a user when interacting with the system. Ideally the parameters of this dialogue model should be also optimised to maximise the expected cumulative reward. This article presents two novel reinforcement algorithms for learning the parameters of a dialogue model. First, the Natural Belief Critic algorithm is designed to optimise the model parameters while the policy is kept fixed. This algorithm is suitable, for example, in systems using a handcrafted policy, perhaps prescribed by other design considerations. Second, the Natural Actor and Belief Critic algorithm jointly optimises both the model and the policy parameters. The algorithms are evaluated on a statistical dialogue system modelled as a Partially Observable Markov Decision Process in a tourist information domain. The evaluation is performed with a user simulator and with real users. The experiments indicate that model parameters estimated to maximise the expected reward function provide improved performance compared to the baseline handcrafted parameters. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelling dialogue as a Partially Observable Markov Decision Process (POMDP) enables a dialogue policy robust to speech understanding errors to be learnt. However, a major challenge in POMDP policy learning is to maintain tractability, so the use of approximation is inevitable. We propose applying Gaussian Processes in Reinforcement learning of optimal POMDP dialogue policies, in order (1) to make the learning process faster and (2) to obtain an estimate of the uncertainty of the approximation. We first demonstrate the idea on a simple voice mail dialogue task and then apply this method to a real-world tourist information dialogue task. © 2010 Association for Computational Linguistics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most previous work on trainable language generation has focused on two paradigms: (a) using a statistical model to rank a set of generated utterances, or (b) using statistics to inform the generation decision process. Both approaches rely on the existence of a handcrafted generator, which limits their scalability to new domains. This paper presents BAGEL, a statistical language generator which uses dynamic Bayesian networks to learn from semantically-aligned data produced by 42 untrained annotators. A human evaluation shows that BAGEL can generate natural and informative utterances from unseen inputs in the information presentation domain. Additionally, generation performance on sparse datasets is improved significantly by using certainty-based active learning, yielding ratings close to the human gold standard with a fraction of the data. © 2010 Association for Computational Linguistics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The partially observable Markov decision process (POMDP) has been proposed as a dialogue model that enables automatic improvement of the dialogue policy and robustness to speech understanding errors. It requires, however, a large number of dialogues to train the dialogue policy. Gaussian processes (GP) have recently been applied to POMDP dialogue management optimisation showing an ability to substantially increase the speed of learning. Here, we investigate this further using the Bayesian Update of Dialogue State dialogue manager. We show that it is possible to apply Gaussian processes directly to the belief state, removing the need for a parametric policy representation. In addition, the resulting policy learns significantly faster while maintaining operational performance. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A partially observable Markov decision process (POMDP) has been proposed as a dialog model that enables automatic optimization of the dialog policy and provides robustness to speech understanding errors. Various approximations allow such a model to be used for building real-world dialog systems. However, they require a large number of dialogs to train the dialog policy and hence they typically rely on the availability of a user simulator. They also require significant designer effort to hand-craft the policy representation. We investigate the use of Gaussian processes (GPs) in policy modeling to overcome these problems. We show that GP policy optimization can be implemented for a real world POMDP dialog manager, and in particular: 1) we examine different formulations of a GP policy to minimize variability in the learning process; 2) we find that the use of GP increases the learning rate by an order of magnitude thereby allowing learning by direct interaction with human users; and 3) we demonstrate that designer effort can be substantially reduced by basing the policy directly on the full belief space thereby avoiding ad hoc feature space modeling. Overall, the GP approach represents an important step forward towards fully automatic dialog policy optimization in real world systems. © 2013 IEEE.