12 resultados para Data acquisition card
em Cambridge University Engineering Department Publications Database
Resumo:
Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.
Resumo:
Infrastructure spatial data, such as the orientation and the location of in place structures and these structures' boundaries and areas, play a very important role for many civil infrastructure development and rehabilitation applications, such as defect detection, site planning, on-site safety assistance and others. In order to acquire these data, a number of modern optical-based spatial data acquisition techniques can be used. These techniques are based on stereo vision, optics, time of flight, etc., and have distinct characteristics, benefits and limitations. The main purpose of this paper is to compare these infrastructure optical-based spatial data acquisition techniques based on civil infrastructure application requirements. In order to achieve this goal, the benefits and limitations of these techniques were identified. Subsequently, these techniques were compared according to applications' requirements, such as spatial accuracy, the automation of acquisition, the portability of devices and others. With the help of this comparison, unique characteristics of these techniques were identified so that practitioners will be able to select an appropriate technique for their own applications.
Resumo:
Integration of a piezoelectric high frequency ultrasound (HFUS) array with a microfabricated application specific integrated circuit (ASIC) performing a range of functions has several advantages for ultrasound imaging. The number of signal cables between the array/electronics and the data acquisition / imaging system can be reduced, cutting costs and increasing functionality. Electrical impedance matching is also simplified and the same approach can reduce overall system dimensions for applications such as endoscopic ultrasound. The work reported in this paper demonstrates early ASIC operation with a piezocomposite HFUS array operating at approximately 30 MHz. The array was tested in three different modes. Clear signals were seen in catch-mode, with an external transducer as a source of ultrasound, and in pitch-mode with the external transducer as a receiver. Pitch-catch mode was also tested successfully, using sequential excitation on three array elements, and viable signals were detected. However, these were relatively small and affected by interference from mixed-signal sources in the ASIC. Nevertheless, the functionality and compatibility of the two main components of an integrated HFUS - ASIC device have been demonstrated and the means of further optimization are evident.
Resumo:
The 8π spectrometer at TRIUMF-ISAC consists of 20 Compton-suppressed germanium detectors and various auxiliary devices. The Ge array, once used for studies of nuclei at high angular momentum, has been transformed into the world's most powerful device dedicated to radioactive-decay studies. Many improvements in the spectrometer have been made, including a high-throughput data acquisition system, installation of a moving tape collector, incorporation of an array of 20 plastic scintillators for β-particle tagging, 5 Si(Li) detectors for conversion electrons, and 10 BaF2 detectors for fast-lifetime measurements. Experiments can be performed where data from all detectors are collected simultaneously, resulting in a very detailed view of the nucleus through radioactive decay. A number of experimental programmes have been launched that take advantage of the versatility of the spectrometer, and the intense beams available at TRIUMF-ISAC. © 2006 American Institute of Physics.
Resumo:
Cheap to make and easy to shape, Magnesium Diboride (MgB2) throws the field of applied superconductivity wide open. Great efforts have been made to develop a super-conducting fault current limiter (SFCL) using MgB 2. With a superconducting transition temperature of 39 K, MgB 2 can be conveniently cooled with commercial cryocoolers. A cryogenic desktop test system, an ac pulse generation system and a real time data acquisition program in LabView/DAQmx were developed to investigate the quench behavior of MgB2 wires under pulse overcurrents at 25 K in self-field conditions. The experimental results on the current limitation behavior show the possibilities for using MgB2 for future SFCL applications. © 2007 IEEE.
Resumo:
A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB 2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB 2 for future superconducting fault current limiter (SFCL) applications. © IOP Publishing Ltd.
Resumo:
The physical meaning and calculation procedures for determining loudness was critically analyzed. Four noise sources were used in comparing the software packages dBFA dBSonic, which were used in the investigation to a public domain code. The purpose of the comparison was to evaluate the validity of the results obtained and to gain an idea of the shortcomings of the relevant standards. A comparison of the results for loudness was computed from various methods, used in the study. Two basic sources of input data such as a sound level meter (SLM) and a 01 dB data acquisition system (DAQ), were available for the comparison. The SLM directly gave 1/3 octave band levels, while the data from the DAQ was filtered to give the results. Five processing methods, including a Visual Basic (VB) program and a VB program adapted from dBFA, were used for the study. It was found that the calculation of loudness from 1/3 octave cannot be separated from the filtering process.
Resumo:
Cellular behavior is strongly influenced by the architecture and pattern of its interfacing extracellular matrix (ECM). For an artificial culture system which could eventually benefit the translation of scientific findings into therapeutic development, the system should capture the key characteristics of a physiological microenvironment. At the same time, it should also enable standardized, high throughput data acquisition. Since an ECM is composed of different fibrous proteins, studying cellular interaction with individual fibrils will be of physiological relevance. In this study, we employ near-field electrospinning to create ordered patterns of collagenous fibrils of gelatin, based on an acetic acid and ethyl acetate aqueous co-solvent system. Tunable conformations of micro-fibrils were directly deposited onto soft polymeric substrates in a single step. We observe that global topographical features of straight lines, beads-on-strings, and curls are dictated by solution conductivity; whereas the finer details such as the fiber cross-sectional profile are tuned by solution viscosity. Using these fibril constructs as cellular assays, we study EA.hy926 endothelial cells' response to ROCK inhibition, because of ROCK's key role in the regulation of cell shape. The fibril array was shown to modulate the cellular morphology towards a pre-capillary cord-like phenotype, which was otherwise not observed on a flat 2-D substrate. Further facilitated by quantitative analysis of morphological parameters, the fibril platform also provides better dissection in the cells' response to a H1152 ROCK inhibitor. In conclusion, the near-field electrospun fibril constructs provide a more physiologically-relevant platform compared to a featureless 2-D surface, and simultaneously permit statistical single-cell image cytometry using conventional microscopy systems. The patterning approach described here is also expected to form the basics for depositing other protein fibrils, seen among potential applications as culture platforms for drug screening.
Resumo:
This article presents a new method for acquiring three-dimensional (3-D) volumes of ultrasonic axial strain data. The method uses a mechanically-swept probe to sweep out a single volume while applying a continuously varying axial compression. Acquisition of a volume takes 15-20 s. A strain volume is then calculated by comparing frame pairs throughout the sequence. The method uses strain quality estimates to automatically pick out high quality frame pairs, and so does not require careful control of the axial compression. In a series of in vitro and in vivo experiments, we quantify the image quality of the new method and also assess its ease of use. Results are compared with those for the current best alternative, which calculates strain between two complete volumes. The volume pair approach can produce high quality data, but skillful scanning is required to acquire two volumes with appropriate relative strain. In the new method, the automatic quality-weighted selection of image pairs overcomes this difficulty and the method produces superior quality images with a relatively relaxed scanning technique.
Resumo:
Due to concerns about environmental protection and resource utilization, product lifecycle management for end-of-life (EOL) has received increasing attention in many industrial sectors including manufacturing, maintenance/repair, and recycling/refurbishing of the product. To support these functions, crucial issues are studied to realize a product recovery management system (PRMS), including: (1) an architecture design for EOL services, such as remanufacturing and recycling; (2) a product data model required for EOL activity based on international standards; and (3) an infrastructure for information acquisition and mapping to product lifecycle information. The presented works are illustrated via a realistic scenario. © 2008 Elsevier B.V. All rights reserved.