35 resultados para DPL tips
em Cambridge University Engineering Department Publications Database
Resumo:
Local measurements of the heat transfer coefficient and pressure coefficient were conducted on the tip and near tip region of a generic turbine blade in a five-blade linear cascade. Two tip clearance gaps were used: 1.6% and 2.8% chord. Data was obtained at a Reynolds number of 2.3 × 10 5 based on exit velocity and chord. Three different tip geometries were investigated: a flat (plain) tip, a suction-side squealer, and a cavity squealer. The experiments reveal that the flow through the plain gap is dominated by flow separation at the pressure-side edge and that the highest levels of heat transfer are located where the flow reattaches on the tip surface. High heat transfer is also measured at locations where the tip-leakage vortex has impinged onto the suction surface of the aerofoil. The experiments are supported by flow visualisation computed using the CFX CFD code which has provided insight into the fluid dynamics within the gap. The suction-side and cavity squealers are shown to reduce the heat transfer in the gap but high levels of heat transfer are associated with locations of impingement, identified using the flow visualisation and aerodynamic data. Film cooling is introduced on the plain tip at locations near the pressure-side edge within the separated region and a net heat flux reduction analysis is used to quantify the performance of the successful cooling design. copyright © 2005 by ASME.
Resumo:
Flare tips are essential for safety. Maintenance is difficult and costly. Flare tips are subjected to high combustion temperatures, thermal cycling, oxidation and marine corrosion. Following a number of flare tip failures an in depth study by Imperial College was carried out into the failure of a flare tip from a UK platform, looking for service life improvement. Materials selection and design solutions were considered. The study considered alternative materials and concluded that materials selection was the smaller part of the answer; design changes can double service life. This study used failure investigation, high temperature experimental and thermo-mechanical modelling analysis. The modelling process simulated two common flaring conditions and correctly predicted the observed failure of initiation and crack propagation from holes used to bolt on flame stabilizing plates to the top of the flare. The calculated thermal stress and strains enabled the low cycle fatigue life and minimum creep life to be predicted. It was concluded that service life could be improved by replacing Incoloy alloy 800HT (UNS N08800) with Inconel alloy 625 (UNS N06625), an alloy with attractive mechanical properties and improved high temperature corrosion resistance. Repositioning or eliminating bolt holes can double service life. Copyright 2008, Society of Petroleum Engineers.
Resumo:
The probe tip is pivotal in determining the resolution and nature of features observed in the Scanning Tunnelling Microscope (STM). We have augmented a conventional Pt/Ir metallic tip with a hydrothermally grown ZnO nanowire (NW). Atomic resolution imaging of graphite is attained. Current-voltage (IV) characteristics demonstrate an asymmetry stemming from the unintentional n-type doping of the ZnO NW, whereas the expected Schottky barrier at the ZnO-Pt/Ir interface is shown to have negligible effect. Moreover the photoconductivity of the system is investigated, paving the way towards a photodetector capable of atomic resolution.
Resumo:
Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.