3 resultados para DERIVATIONS

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and general design procedure is presented for the polarisation diversity of arbitrary conformal arrays; this procedure is based on the mathematical framework of geometric algebra and can be solved optimally using convex optimisation. Aside from being simpler and more direct than other derivations in the literature, this derivation is also entirely general in that it expresses the transformations in terms of rotors in geometric algebra which can easily be formulated for any arbitrary conformal array geometry. Convex optimisation has a number of advantages; solvers are widespread and freely available, the process generally requires a small number of iterations and a wide variety of constraints can be readily incorporated. The study outlines a two-step approach for addressing polarisation diversity in arbitrary conformal arrays: first, the authors obtain the array polarisation patterns using geometric algebra and secondly use a convex optimisation approach to find the optimal weights for the polarisation diversity problem. The versatility of this approach is illustrated via simulations of a 7×10 cylindrical conformal array. © 2012 The Institution of Engineering and Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A location- and scale-invariant predictor is constructed which exhibits good probability matching for extreme predictions outside the span of data drawn from a variety of (stationary) general distributions. It is constructed via the three-parameter {\mu, \sigma, \xi} Generalized Pareto Distribution (GPD). The predictor is designed to provide matching probability exactly for the GPD in both the extreme heavy-tailed limit and the extreme bounded-tail limit, whilst giving a good approximation to probability matching at all intermediate values of the tail parameter \xi. The predictor is valid even for small sample sizes N, even as small as N = 3. The main purpose of this paper is to present the somewhat lengthy derivations which draw heavily on the theory of hypergeometric functions, particularly the Lauricella functions. Whilst the construction is inspired by the Bayesian approach to the prediction problem, it considers the case of vague prior information about both parameters and model, and all derivations are undertaken using sampling theory.