74 resultados para DAMAGE EVOLUTION
em Cambridge University Engineering Department Publications Database
Resumo:
The objective of the present study is to assess the capabilities of a recently developed mechanism-based model for inelastic deformation and damage in structural ceramics. In addition to conventional lattice plasticity, the model accounts for microcrack growth and coalescence as well as granular flow following comminution. The assessment is made through a coupled experimental/computational study of the indentation response of a commercial armor ceramic. The experiments include examinations of subsurface damage zones along with measurements of residual surface profiles and residual near-surface stresses. Extensive finite element computations are conducted in parallel. Comparisons between experiment and simulation indicate that the most discriminating metric in the assessment is the spatial extent of subsurface damage following indentation. Residual stresses provide additional validation. In contrast, surface profiles of indents are dictated largely by lattice plasticity and thus provide minimal additional insight into the inelastic deformation resulting from microcracking or granular flow. A satisfactory level of correlation is obtained using property values that are either measured directly or estimated from physically based arguments, without undue reliance on adjustable (nonphysical) parameters. © 2011 The American Ceramic Society.
Resumo:
Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.