9 resultados para Crystal protein

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The supra-molecular self-assembly of peptides and proteins is a process which underlies a range of normal and aberrant biological pathways in nature, but one which remains challenging to monitor in a quantitative way. We discuss the experimental details of an approach to this problem which involves the direct measurement in vitro of mass changes of the aggregates as new molecules attach to them. The required mass sensitivity can be achieved by the use of a quartz crystal transducer-based microbalance. The technique should be broadly applicable to the study of protein aggregation, as well as to the identification and characterisation of inhibitors and modulators of this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical control of surface functionality and topography is an essential requirement for many technological purposes. In particular, the covalent attachment of monomeric proteins to surfaces has been the object of intense studies in recent years, for applications as varied as electrochemistry, immuno-sensing, and the production of biocompatible coatings. Little is known, however, about the characteristics and requirements underlying surface attachment of supramolecular protein nanostructures. Amyloid fibrils formed by the self-assembly of peptide and protein molecules represent one important class of such structures. These highly organized beta-sheet-rich assemblies are a hallmark of a range of neurodegenerative disorders, including Alzheimer's disease and type II diabetes, but recent findings suggest that they have much broader significance, potentially representing the global free energy minima of the energy landscapes of proteins and having potential applications in material science. In this paper, we describe strategies for attaching amyloid fibrils formed from different proteins to gold surfaces under different solution conditions. Our methods involve the reaction of sulfur containing small molecules (cystamine and 2-iminothiolane) with the amyloid fibrils, enabling their covalent linkage to gold surfaces. We demonstrate that irreversible attachment using these approaches makes possible quantitative analysis of experiments using biosensor techniques, such as quartz crystal microbalance (QCM) assays that are revolutionizing our understanding of the mechanisms of amyloid growth and the factors that determine its kinetic behavior. Moreover, our results shed light on the nature and relative importance of covalent versus noncovalent forces acting on protein superstructures at metal surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm2 corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that "soft" proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials. © 2014 The Authors.