100 resultados para Critical spatiality
em Cambridge University Engineering Department Publications Database
Resumo:
The impact of differing product strategies on product innovation processes pursued by healthcare firms is discussed. The critical success factors aligned to product strategies are presented. A definite split between pioneering product strategies and late entrant product strategies is also recognised.
Resumo:
The magnetic moment of square planar melt processed YBa2Cu3O7-δ thick films is observed to scale with the cube of the sample width at 4.2 K, suggesting that current flow on the length scale of the film determines its magnetization at this temperature. A well-defined discontinuity in slope in the scaling data at a sample width corresponding to the average grain size (≈2 mm) implies the coexistence of distinct intra- and inter-grain critical current densities of 1.1 × 105Acm-2 and 0.4 × 105Acm-2 at 1 T and 4.2 K. The presence of a critical state in the films at 4.2T is confirmed by removing the central section from a specimen. The observed change in magnetic moment is in excellent agreement with theory for fields greater than ≈2 T. A critical state is not observed at 77 K which suggests that the grains are only weakly coupled at the higher temperature. © 1994.
Resumo:
Transport critical current measurements have been carried out on melt-processed thick films of YBa2Cu3O7-δ on yttria-stabilized zirconia in fields of up to 8 T both within grains and across grain boundaries. These measurements yield Jc values of ∼3000 A cm-2 at 4.2 K and zero magnetic field and 400 A cm -2 at 77 K and zero magnetic field, taking the entire sample width as the definitive dimension. Optical and scanning electron microscopy reveals that the thick-film grains consist typically of a central "hub" region ∼50 μm in diameter, which is well connected to radial subgrains or "spokes" which extend ∼1 mm to define the complete grain structure. Attempts have been made to correlate the transport measurements of inter- and intra-hub-and-spoke (H-S) critical current with values of this parameter derived previously from magnetization measurements. Analysis of the transport measurements indicates that current flow through H-S grains is constrained to paths along the spokes via the grain hub. Taking the size of the hub as the definitive dimension yields an intra-H-S grain Jc of ∼60 000 A cm-2 at 4.2 K and 0 T, which is in reasonable agreement with the magnetization data. Experiments in which the hub is removed from individual grains confirm that this feature determines critically the J c of the film.