1 resultado para Cox, Samuel Sullivan, 1824-1889.
em Cambridge University Engineering Department Publications Database
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca Digital da Câmara dos Deputados (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (64)
- Boston University Digital Common (3)
- Brock University, Canada (143)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (52)
- Center for Jewish History Digital Collections (20)
- Chapman University Digital Commons - CA - USA (7)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Collection Of Biostatistics Research Archive (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons @ Winthrop University (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (71)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (137)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (11)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (5)
- Infoteca EMBRAPA (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Ministerio de Cultura, Spain (13)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (65)
- Queensland University of Technology - ePrints Archive (4)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (83)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (24)
- South Carolina State Documents Depository (9)
- Universidad Autónoma de Nuevo León, Mexico (26)
- Universidad del Rosario, Colombia (10)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (11)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (12)
- University of Michigan (83)
- University of Southampton, United Kingdom (5)
Resumo:
McCullagh and Yang (2006) suggest a family of classification algorithms based on Cox processes. We further investigate the log Gaussian variant which has a number of appealing properties. Conditioned on the covariates, the distribution over labels is given by a type of conditional Markov random field. In the supervised case, computation of the predictive probability of a single test point scales linearly with the number of training points and the multiclass generalization is straightforward. We show new links between the supervised method and classical nonparametric methods. We give a detailed analysis of the pairwise graph representable Markov random field, which we use to extend the model to semi-supervised learning problems, and propose an inference method based on graph min-cuts. We give the first experimental analysis on supervised and semi-supervised datasets and show good empirical performance.