53 resultados para Cost structure and productivity
em Cambridge University Engineering Department Publications Database
Resumo:
The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.
Resumo:
The electronic structure of SrBi2Ta2O9 and related oxides such as SrBi2Nb2O9, Bi2WO6 and Bi3Ti4O12 have been calculated by the tight-binding method. In each case, the band gap is about 4.1 eV and the band edge states occur on the Bi-O layers and consist of mixed O p/Bi s states at the top of the valence band and Bi p states at the bottom of the conduction band. The main difference between the compounds is that Nb 5d and Ti 4d states in the Nb and Ti compounds lie lower than the Ta 6d states in the conduction band. The surface pinning levels are found to pin Schottky barriers 0.8 eV below the conduction band edge.