6 resultados para Corpora
em Cambridge University Engineering Department Publications Database
Resumo:
A system of computer assisted grammar construction (CAGC) is presented in this paper. The CAGC system is designed to generate broad-coverage grammars for large natural language corpora by utilizing both an extended inside-outside algorithm and an automatic phrase bracketing (AUTO) system which is designed to provide the extended algorithm with constituent information during learning. This paper demonstrates the capability of the CAGC system to deal with realistic natural language problems and the usefulness of the AUTO system for constraining the inside-outside based grammar re-estimation. Performance results, including coverage, recall and precision, are presented for a grammar constructed for the Wall Street Journal (WSJ) corpus using the Penn Treebank.
Resumo:
We present a new online psycholinguistic resource for Greek based on analyses of written corpora combined with text processing technologies developed at the Institute for Language & Speech Processing (ILSP), Greece. The "ILSP PsychoLinguistic Resource" (IPLR) is a freely accessible service via a dedicated web page, at http://speech.ilsp.gr/iplr. IPLR provides analyses of user-submitted letter strings (words and nonwords) as well as frequency tables for important units and conditions such as syllables, bigrams, and neighbors, calculated over two word lists based on printed text corpora and their phonetic transcription. Online tools allow retrieval of words matching user-specified orthographic or phonetic patterns. All results and processing code (in the Python programming language) are freely available for noncommercial educational or research use. © 2010 Springer Science+Business Media B.V.
Resumo:
The development of high-performance speech processing systems for low-resource languages is a challenging area. One approach to address the lack of resources is to make use of data from multiple languages. A popular direction in recent years is to use bottleneck features, or hybrid systems, trained on multilingual data for speech-to-text (STT) systems. This paper presents an investigation into the application of these multilingual approaches to spoken term detection. Experiments were run using the IARPA Babel limited language pack corpora (∼10 hours/language) with 4 languages for initial multilingual system development and an additional held-out target language. STT gains achieved through using multilingual bottleneck features in a Tandem configuration are shown to also apply to keyword search (KWS). Further improvements in both STT and KWS were observed by incorporating language questions into the Tandem GMM-HMM decision trees for the training set languages. Adapted hybrid systems performed slightly worse on average than the adapted Tandem systems. A language independent acoustic model test on the target language showed that retraining or adapting of the acoustic models to the target language is currently minimally needed to achieve reasonable performance. © 2013 IEEE.