6 resultados para Core diameter, deviation
em Cambridge University Engineering Department Publications Database
Resumo:
An iterative, self-correcting system for doing modal control using adaptive optics in a 50μm core diameter multimode fiber (MMF) is designed. It is shown experimentally to reduce the number of modes generated by 300%. © 2006 Optical Society of America.
Resumo:
An iterative, self-correcting system for doing modal control using adaptive optics in a 50μm core diameter multimode fiber (MMF) is designed. It is shown experimentally to reduce the number of modes generated by 300%. © 2006 Optical Society of America.
Resumo:
A systematic study of the kinetics of axial Ni silicidation of as-grown and oxidized Si nanowires (SiNWs) with different crystallographic orientations and core diameters ranging from ∼ 10 to 100 nm is presented. For temperatures between 300 and 440 °C the length of the total axial silicide intrusion varies with the square root of time, which provides clear evidence that the rate limiting step is diffusion of Ni through the growing silicide phase(s). A retardation of Ni-silicide formation for oxidized SiNWs is found, indicative of a stress induced lowering of the diffusion coefficients. Extrapolated growth constants indicate that the Ni flux through the silicided NW is dominated by surface diffusion, which is consistent with an inverse square root dependence of the silicide length on the NW diameter as observed for (111) orientated SiNWs. In situ TEM silicidation experiments show that NiSi(2) is the first forming phase for as-grown and oxidized SiNWs. The silicide-SiNW interface is thereby atomically abrupt and typically planar. Ni-rich silicide phases subsequently nucleate close to the Ni reservoir, which for as-grown SiNWs can lead to a complete channel break-off for prolonged silicidation due to significant volume expansion and morphological changes.