3 resultados para Conventional evaluation

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical expression is proposed to estimate the wave drag of an aerofoil equipped with shock control. The analysis extends the conventional approach for a single normal shock wave, based on the knowledge that all types of successful shock control on transonic aerofoils cause bifurcated λ-shock structures. The influence of surface curvature on the λ-shock structure has been taken into account. The extended method has been found to produce fairly good agreement with the results obtained by CFD methods while requiring negligible computational effort. This new formulation is expected to be beneficial in the industrial design process of transonic aerofoils and wings where a large number of computational simulations have to be performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model predictive control allows systematic handling of physical and operational constraints through the use of constrained optimisation. It has also been shown to successfully exploit plant redundancy to maintain a level of control in scenarios when faults are present. Unfortunately, the computational complexity of each individual iteration of the algorithm to solve the optimisation problem scales cubically with the number of plant inputs, so the computational demands are high for large MIMO plants. Multiplexed MPC only calculates changes in a subset of the plant inputs at each sampling instant, thus reducing the complexity of the optimisation. This paper demonstrates the application of multiplexed model predictive control to a large transport airliner in a nominal and a contingency scenario. The performance is compared to that obtained with a conventional synchronous model predictive controller, designed using an equivalent cost function. © 2012 AACC American Automatic Control Council).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses devising a reliable model-based Harmonic-Aware Matching Pursuit (HAMP) for reconstructing sparse harmonic signals from their compressed samples. The performance guarantees of HAMP are provided; they illustrate that the introduced HAMP requires less data measurements and has lower computational cost compared with other greedy techniques. The complexity of formulating a structured sparse approximation algorithm is highlighted and the inapplicability of the conventional thresholding operator to the harmonic signal model is demonstrated. The harmonic sequential deletion algorithm is subsequently proposed and other sparse approximation methods are evaluated. The superior performance of HAMP is depicted in the presented experiments. © 2013 IEEE.