55 resultados para Convective plume
em Cambridge University Engineering Department Publications Database
Resumo:
Developing a theoretical description of turbulent plumes, the likes of which may be seen rising above industrial chimneys, is a daunting thought. Plumes are ubiquitous on a wide range of scales in both the natural and the man-made environments. Examples that immediately come to mind are the vapour plumes above industrial smoke stacks or the ash plumes forming particle-laden clouds above an erupting volcano. However, plumes also occur where they are less visually apparent, such as the rising stream of warmair above a domestic radiator, of oil from a subsea blowout or, at a larger scale, of air above the so-called urban heat island. In many instances, not only the plume itself is of interest but also its influence on the environment as a whole through the process of entrainment. Zeldovich (1937, The asymptotic laws of freely-ascending convective flows. Zh. Eksp. Teor. Fiz., 7, 1463-1465 (in Russian)), Batchelor (1954, Heat convection and buoyancy effects in fluids. Q. J. R. Meteor. Soc., 80, 339-358) and Morton et al. (1956, Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A, 234, 1-23) laid the foundations for classical plume theory, a theoretical description that is elegant in its simplicity and yet encapsulates the complex turbulent engulfment of ambient fluid into the plume. Testament to the insight and approach developed in these early models of plumes is that the essential theory remains unchanged and is widely applied today. We describe the foundations of plume theory and link the theoretical developments with the measurements made in experiments necessary to close these models before discussing some recent developments in plume theory, including an approach which generalizes results obtained separately for the Boussinesq and the non-Boussinesq plume cases. The theory presented - despite its simplicity - has been very successful at describing and explaining the behaviour of plumes across the wide range of scales they are observed. We present solutions to the coupled set of ordinary differential equations (the plume conservation equations) that Morton et al. (1956) derived from the Navier-Stokes equations which govern fluid motion. In order to describe and contrast the bulk behaviour of rising plumes from general area sources, we present closed-form solutions to the plume conservation equations that were achieved by solving for the variation with height of Morton's non-dimensional flux parameter Γ - this single flux parameter gives a unique representation of the behaviour of steady plumes and enables a characterization of the different types of plume. We discuss advantages of solutions in this form before describing extensions to plume theory and suggesting directions for new research. © 2010 The Author. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Resumo:
The natural ventilation of a well-mixed, pre-heated room with a point source of heating, and openings at the base and roof is investigated. The transient draining associated with the room being warmer than the exterior combined with the convective ow produced by the point source of heat leads to a fascinating series of transient ow regimes as the system evolves to the two-layer steady-state regime described by Linden, Lane-Ser_ and Smeed [1]. As the room begins to ventilate, a turbulent plume rises from the point source of heat to the ceiling, and typically forms a deepening layer of hot air. However, with a weak heat source, then at some point the ascending plume will intrude beneath the layer of original uid. Otherwise, the ascending plume always reaches the top of the room as the system evolves to a steady state. We develop a simpli_ed model of the transient evolution and test this with some new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.
Resumo:
This paper presents experimental results on heat transfer and pressure drop for a compact heat sink made of fully triangulated, lightweight (porosity∼0.938), aluminum lattice-frame materials (LFMs). Due to the inherent structural anisotropy of the LFMs, two mutually perpendicular orientations were selected for the measurements. Constant heat flux was applied to the heat sink under steady state conditions, and dissipated by forced air convection. The experimental data were compared with those predicted from an analytical model based on fin analogy. The experimental results revealed that pressure drop is strongly dependent upon the orientation of the structure, due mainly to the flow blockage effect. For heat transfer measurements, typical local temperature distributions on the substrate under constant heat flux conditions were captured with infrared camera. The thermal behavior of LFMs was found to follow closely that of cylinder banks, with early transition Reynolds number (based on strut diameter) equal to about 300. The Nusselt number prediction from the fin-analogy correlates well with experimental measurements, except at low Reynolds numbers where a slightly underestimation is observed. Comparisons with empty channels and commonly used heat exchanger media show that the present LFM heat sink can remove heat approximately seven times more efficient than an empty channel and as efficient as a bank of cylinders at the same porosity level. The aluminum LFMs are extremely stiff and strong, making them ideal candidates for multifunctional structures requiring both heat dissipation and mechanical load carrying capabilities. © 2003 Elsevier Ltd. All rights reserved.