83 resultados para Constant-pressure

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although increasing the turbine inlet temperature has traditionally proved the surest way to increase cycle efficiency, recent work suggests that the performance of future gas turbines may be limited by increased cooling flows and losses. Another limiting scenario concerns the effect on cycle performance of real gas properties at high temperatures. Cycle calculations of uncooled gas turbines show that when gas properties are modelled accurately, the variation of cycle efficiency with turbine inlet temperature at constant pressure ratio exhibits a maximum at temperatures well below the stoichiometric limit. Furthermore, the temperature at the maximum decreases with increasing compressor and turbine polytropic efficiency. This behaviour is examined in the context of a two-component model of the working fluid. The dominant influences come from the change of composition of the combustion products with varying air/fuel ratio (particularly the contribution from the water vapour) together with the temperature variation of the specific heat capacity of air. There are implications for future industrial development programmes, particularly in the context of advanced mixed gas-steam cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The numerical solution of problems in unbounded physical space requires a truncation of the computational domain to a reasonable size. As a result, the conditions on the artificial boundaries are generally unknown. Assumptions like constant pressure or velocities are only valid in the far field and lead to spurious reflections if applied on the boundaries of the truncated domain. A number of attempts have been made over the past decades to design conditions that prevent such reflections. One approach is based on characteristics. The standard analysis assumes a spatially uniform mean flow field but this is often impractical. In the present paper we show how to extend the formulation to the more general case of a non-uniform mean velocity field. A number of test cases are provided and our results compare favourably with other boundary conditions. In principle the present approach can be extended to include non-uniformities in all variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article considers constant-pressure autoignition and freely propagating premixed flames of cold methane/air mixtures mixed with equilibrium hot products at high enough dilution levels to burn within the moderate to intense low oxygen dilution (MILD) combustion regime. The analysis is meant to provide further insight on MILD regime boundaries and to identify the effect of hot products speciation. As the mass fraction of hot products in the reactants mixture increases, autoignition occurs earlier. Species profiles show that the products/reactants mixture approximately equilibrates to a new state over a quick transient well before the main autoignition event, but as dilution becomes very high, this equilibration transient becomes more prominent and eventually merges with the primary ignition event. The dilution level at which these two reactive zones merge corresponds well with that marking the transition into the MILD regime, as defined according to conventional criteria. Similarly, premixed flame simulations at high dilutions show evidence of significant reactions involving intermediate species prior to the flame front. Since the premixed flame governing equations system demands that the species and temperature gradients be zero at the "cold" boundary, flame speed cannot be calculated above a certain dilution level. Up to this point, which again agrees reasonably well with the transition into the MILD regime according to convention, the laminar burning velocity was found to increase with hot product dilution while flame thickness remained largely unchanged. Some comments on the MILD combustion regime boundary definition for gas turbine applications are included. Copyright © Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides a physical interpretation of the mechanism of stagnation enthalpy and stagnation pressure changes in turbomachines due to unsteady flow, the agency for all work transfer between a turbomachine and an inviscid fluid. Examples are first given to illustrate the direct link between the time variation of static pressure seen by a given fluid particle and the rate of change of stagnation enthalpy for that particle. These include absolute stagnation temperature rises in turbine rotor tip leakage flow, wake transport through downstream blade rows, and effects of wake phasing on compressor work input. Fluid dynamic situations are then constructed to explain the effect of unsteadiness, including a physical interpretation of how stagnation pressure variations are created by temporal variations in static pressure; in this it is shown that the unsteady static pressure plays the role of a time-dependent body force potential. It is further shown that when the unsteadiness is due to a spatial nonuniformity translating at constant speed, as in a turbomachine, the unsteady pressure variation can be viewed as a local power input per unit mass from this body force to the fluid particle instantaneously at that point. © 2012 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A potentiometric device based on interfacing a solid electrolyte oxygen ion conductor with a thin platinum film acts as a robust, reproducible sensor for the detection of hydrocarbons in high- or ultrahigh-vacuum environments. Sensitivities in the order of approximately 5 x 10(-10) mbar are achievable under open circuit conditions, with good selectivity for discrimination between n-butane on one hand and toluene, n-octane, n-hexane, and 1-butene on the other hand. The sensor's sensitivity may be tuned by operating under constant current (closed circuit) conditions; injection of anodic current is also a very effective means of restoring a clean sensing surface at any desired point. XPS data and potentiometric measurements confirm the proposed mode of sensing action: the steady-state coverage of Oa, which sets the potential of the Pt sensing electrode, is determined by the partial pressure and dissociative sticking probability of the impinging hydrocarbon. The principles established here provide the basis for a viable, inherently flexible, and promising means for the sensitive and selective detection of hydrocarbons under demanding conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent experimental work, we use first-principles density functional theory methods to conduct an extensive search for low enthalpy structures of C$_6$Ca under pressure. As well as a range of buckled structures, which are energetically competitive over an intermediate range of pressures, we show that the high pressure system ($\gtrsim 18$ GPa) is unstable towards the formation of a novel class of layered structures, with the most stable compound involving carbon sheets containing five- and eight-membered rings. As well as discussing the energetics of the different classes of low enthalpy structures, we comment on the electronic structure of the high pressure compound and its implications for superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents experimental results on heat transfer and pressure drop for a compact heat sink made of fully triangulated, lightweight (porosity∼0.938), aluminum lattice-frame materials (LFMs). Due to the inherent structural anisotropy of the LFMs, two mutually perpendicular orientations were selected for the measurements. Constant heat flux was applied to the heat sink under steady state conditions, and dissipated by forced air convection. The experimental data were compared with those predicted from an analytical model based on fin analogy. The experimental results revealed that pressure drop is strongly dependent upon the orientation of the structure, due mainly to the flow blockage effect. For heat transfer measurements, typical local temperature distributions on the substrate under constant heat flux conditions were captured with infrared camera. The thermal behavior of LFMs was found to follow closely that of cylinder banks, with early transition Reynolds number (based on strut diameter) equal to about 300. The Nusselt number prediction from the fin-analogy correlates well with experimental measurements, except at low Reynolds numbers where a slightly underestimation is observed. Comparisons with empty channels and commonly used heat exchanger media show that the present LFM heat sink can remove heat approximately seven times more efficient than an empty channel and as efficient as a bank of cylinders at the same porosity level. The aluminum LFMs are extremely stiff and strong, making them ideal candidates for multifunctional structures requiring both heat dissipation and mechanical load carrying capabilities. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.