84 resultados para Confined panel aspect ratio
em Cambridge University Engineering Department Publications Database
Effect of filament aspect ratio on the dielectric response of multiwalled carbon nanotube composites
Resumo:
The interaction between a high-pressure rotor and a downstream vane is dominated by vortex-blade interaction. Each rotor blade passing period two co-rotating vortex pairs, the tip-leakage and upper passage vortex and the lower passage and trailing shed vortex, impinge on, and are cut by, the vane leading edge. In addition to the streamwise vortex the tip-leakage flow also contains a large velocity deficit. This causes the interaction of the tip-leakage flow with a downstream vane to differ from typical vortex blade interaction. This paper investigates the effect these interaction mechanisms have on a downstream vane. The test geometry considered was a low aspect ratio second stage vane located within a S-shaped diffuser with large radius change mounted downstream of a shroudless high-pressure turbine stage. Experimental measurements were conducted at engine-representative Mach and Reynolds numbers, and data was acquired using a fast-response aerodynamic probe upstream and downstream of the vane. Time-resolved numerical simulations were undertaken with and without a rotor tip gap in order to investigate the relative magnitude of the interaction mechanisms. The presence of the upstream stage is shown to significantly change the structure of the secondary flow in the vane and to cause a small drop in its performance.
Resumo:
Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.
Resumo:
An experimental and numerical investigation into transonic shock/boundary-layer interactions in rectangular ducts has been performed. Experiments have shown that flow development in the corners of transonic shock/boundary-layer interactions in confined channels can have a significant impact on the entire flowfield. As shock strength is increased from M∞ = 1:3 to 1.5, the flowfield becomes very slightly asymmetrical. The interaction of corner flows with one another is thought to be a potential cause of this asymmetry. Thus, factors that govern the size of corner interactions (such as interaction strength) and their proximity to one another (such as tunnel aspect ratio) can affect flow symmetry. The results of the computational study show reasonable agreement with experiments, although simulations with particular turbulence models predict highly asymmetrical solutions for flows that were predominantly symmetrical in experiments. These discrepancies are attributed to the tendency of numerical schemes to overprediction corner-interaction size, and this also accounts for why computational fluid dynamics predicts the onset of asymmetry at lower shock strengths than in experiments. The findings of this study highlight the importance of making informed decisions about imposing artificial constraints on symmetry and boundary conditions for internal transonic flows. Future effort into modeling corner flows accurately is required. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
3D thermo-electro-mechanical device simulations are presented of a novel fully CMOS-compatible MOSFET gas sensor operating in a SOI membrane. A comprehensive stress analysis of a Si-SiO2-based multilayer membrane has been performed to ensure a high degree of mechanical reliability at a high operating temperature (e.g. up to 400°C). Moreover, optimisation of the layout dimensions of the SOI membrane, in particular the aspect ratio between the membrane length and membrane thickness, has been carried out to find the best trade-off between minimal device power consumption and acceptable mechanical stress.
Resumo:
Plasma Enhanced Chemical Vapour Deposition is an extremely versatile technique for directly growing multiwalled carbon nanotubes onto various substrates. We will demonstrate the deposition of vertically aligned nanotube arrays, sparsely or densely populated nanotube forests, and precisely patterned arrays of nanotubes. The high-aspect ratio nanotubes (∼50 nm in diameter and 5 microns long) produced are metallic in nature and direct contact electrical measurements reveal that each nanotube has a current carrying capacity of 107-108 A/cm2, making them excellent candidates as field emission sources. We examined the field emission characteristics of dense nanotube forests as well as sparse nanotube forests and found that the sparse forests had significantly lower turn-on fields and higher emission currents. This is due to a reduction in the field enhancement of the nanotubes due to electric field shielding from adjacent nanotubes in the dense nanotube arrays. We thus fabricated a uniform array of single nanotubes to attempt to overcome these issues and will present the field emission characteristics of this.