69 resultados para Conditional Distribution
em Cambridge University Engineering Department Publications Database
Resumo:
Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches. © 2009 IEEE.
Resumo:
The vibro-acoustic response of built-up structures, consisting of stiff components with low modal density and flexible components with high modal density, is sensitive to small imperfections in the flexible components. In this paper, the uncertainty of the response is considered by modeling the low modal density master system as deterministic and the high modal density subsystems in a nonparametric stochastic way, i.e., carrying a diffuse wave field, and by subsequently computing the response probability density function. The master system's mean squared response amplitude follows a singular noncentral complex Wishart distribution conditional on the subsystem energies. For a single degree of freedom, this is equivalent to a chi-square or an exponential distribution, depending on the loading conditions. The subsystem energies follow approximately a chi-square distribution when their relative variance is smaller than unity. The results are validated by application to plate structures, and good agreement with Monte Carlo simulations is found. © 2012 Acoustical Society of America.
Resumo:
The events that determine the dynamics of proliferation, spread and distribution of microbial pathogens within their hosts are surprisingly heterogeneous and poorly understood. We contend that understanding these phenomena at a sophisticated level with the help of mathematical models is a prerequisite for the development of truly novel, targeted preventative measures and drug regimes. We describe here recent studies of Salmonella enterica infections in mice which suggest that bacteria resist the antimicrobial environment inside host cells and spread to new sites, where infection foci develop, and thus avoid local escalation of the adaptive immune response. We further describe implications for our understanding of the pathogenic mechanism inside the host.
Resumo:
In this paper we address the problem of the separation and recovery of convolutively mixed autoregressive processes in a Bayesian framework. Solving this problem requires the ability to solve integration and/or optimization problems of complicated posterior distributions. We thus propose efficient stochastic algorithms based on Markov chain Monte Carlo (MCMC) methods. We present three algorithms. The first one is a classical Gibbs sampler that generates samples from the posterior distribution. The two other algorithms are stochastic optimization algorithms that allow to optimize either the marginal distribution of the sources, or the marginal distribution of the parameters of the sources and mixing filters, conditional upon the observation. Simulations are presented.