112 resultados para Conceptual designs
em Cambridge University Engineering Department Publications Database
Resumo:
Computational Design has traditionally required a great deal of geometrical and parametric data. This data can only be supplied at stages later than conceptual design, typically the detail stage, and design quality is given by some absolute fitness function. On the other hand, design evaluation offers a relative measure of design quality that requires only a sparse representation. Quality, in this case, is a measure of how well a design will complete its task.
The research intends to address the question: "Is it possible to evaluate a mechanical design at the conceptual design phase and be able to make some prediction of its quality?" Quality can be interpreted as success in the marketplace, success in performing the required task, or some other user requirement. This work aims to determine a minimum level of representation such that conceptual designs can be usefully evaluated without needing to capture detailed geometry. This representation will form the model for the conceptual designs that are being considered for evaluation. The method to be developed will be a case-based evaluation system, that uses a database of previous designs to support design exploration. The method will not be able to support novel design as case-based design implies the model topology must be fixed.
Resumo:
Generally, adjustment of gravity equilibrator to a new payload requires energy, e.g. to increase the pre-load of the balancing spring. A novel way of energy-free adjustment of gravity equilibrators is possible by introducing the concept of a storage spring. The storage spring supplies or stores the energy necessary to adjust the balancer spring of the gravity equilibrator. In essence the storage spring mechanism maintains a constant potential energy within the spring mechanism; energy is exchanged between the storage and balancer spring when needed. Various conceptual designs using both zero-free-length springs and regular extension springs are proposed. Two models were manufactured demonstrating the practical embodiments and functionality.
Resumo:
In this competitive globalizing scenario, manufacturers are adopting a strategy of bundling products and services into an integrated solution to create sustainable competitive advantage. Servitizing manufacturers are increasingly transforming their processes and practices to build product-service systems (PSS). During this transformation they require substantial support to face stringent challenges. Research in the PSS domain is heading towards the development of a design theory and methodology that facilitates the systematic creation of viable PSS conceptual designs. In this paper, various proposed design methods are reviewed and research gaps are summarized. Primarily, it has been observed that the importance of the capabilities of the stakeholders involved in designing PSS has not been noted in the proposed methods. Regarding this capability view point, a framework for designing PSS has been proposed. This framework highlights the important features required in designing PSS such as co-creation, responsibilities and competences. Every step in the framework has been explained with a case study involving laser systems used for manufacturing cutting operation.
Resumo:
There is an increasing demand for optimising complete systems and the devices within that system, including capturing the interactions between the various multi-disciplinary (MD) components involved. Furthermore confidence in robust solutions is esential. As a consequence the computational cost rapidly increases and in many cases becomes infeasible to perform such conceptual designs. A coherent design methodology is proposed, where the aim is to improve the design process by effectively exploiting the potential of computational synthesis, search and optimisation and conventional simulation, with a reduction of the computational cost. This optimization framework consists of a hybrid optimization algorithm to handles multi-fidelity simulations. Simultaneously and in order to handles uncertainty without recasting the model and at affordable computational cost, a stochastic modelling method known as non-intrusive polynomial chaos is introduced. The effectiveness of the design methodology is demonstrated with the optimisation of a submarine propulsion system.
Resumo:
Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. The performance achievable by the unity conversion ratio cores of these reactors was compared to an existing supercritical carbon dioxide-cooled (S-CO2) fast reactor design and an uprated version of an existing sodium-cooled fast reactor. All concepts have cores rated at 2400 MWt. The cores of the liquid-cooled reactors are placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchangers (IHXs) coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. The S-CO2 reactor is directly coupled to the S-CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced reactor vessel auxiliary cooling system (RVACS) and a passive secondary auxiliary cooling system (PSACS). The selection of the water-cooled versus air-cooled heat sink for the PSACS as well as the analysis of the probability that the PSACS may fail to complete its mission was performed using risk-informed methodology. In addition to these features, all reactors were designed to be self-controllable. Further, the liquid-cooled reactors utilized common passive decay heat removal systems whereas the S-CO2 uses reliable battery powered blowers for post-LOCA decay heat removal to provide flow in well defined regimes and to accommodate inadvertent bypass flows. The multiple design limits and challenges which constrained the execution of the four fast reactor concepts are elaborated. These include principally neutronics and materials challenges. The neutronic challenges are the large positive coolant reactivity feedback, small fuel temperature coefficient, small effective delayed neutron fraction, large reactivity swing and the transition between different conversion ratio cores. The burnup, temperature and fluence constraints on fuels, cladding and vessel materials are elaborated for three categories of material - materials currently available, available on a relatively short time scale and available only with significant development effort. The selected fuels are the metallic U-TRU-Zr (10% Zr) for unity conversion ratio and TRU-Zr (75% Zr) for zero conversion ratio. The principal selected cladding and vessel materials are HT-9 and A533 or A508, respectively, for current availability, T-91 and 9Cr-1Mo steel for relatively short-term availability and oxide dispersion strengthened ferritic steel (ODS) available only with significant development. © 2009 Elsevier B.V. All rights reserved.