4 resultados para Computer program

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The creep effects on sequentially built bridges are analysed by the theory of thermal creep. Two types of analysis are used: time dependent and steady state. The traditional uniform creep analysis is also introduced briefly. Both simplified and parabolic normalising creep-temperature functions are used in the analysis for comparison. Numerical examples are presented, calculated by a computer program based on the theory of thermal creep and using the displacement method. It is concluded that different assumptions within thermal creep can lead to very different results when compared with uniform creep analysis. The steady-state analysis of monolithically built structures can serve as a limit to evaluate total creep effects for both monolithically and sequentially built structures. The importance of the correct selection of the normalising creep-temperature function is demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper describes an experimental and theoretical study of the deposition of small spherical particles from a turbulent air flow in a curved duct. The objective was to investigate the interaction between the streamline curvature of the primary flow and the turbulent deposition mechanisms of diffusion and turbophoresis. The experiments were conducted with particles of uranine (used as a fluorescent tracer) produced by an aerosol generator. The particles were entrained in an air flow which passed vertically downwards through a long straight channel of rectangular cross-section leading to a 90° bend. The inside surfaces of the channel and bend were covered with tape to collect the deposited particles. Following a test run the tape was removed in sections, the uranine was dissolved in sodium hydroxide solution and the deposition rates established by measuring the uranine concentration with a luminescence spectrometer. The experimental results were compared with calculations of particle deposition in a curved duct using a computer program that solved the ensemble-averaged particle mass and momentum conservation equations. A particle density-weighted averaging procedure was used and the equations were expressed in terms of the particle convective, rather than total, velocity. This approach provided a simpler formulation of the particle turbulence correlations generated by the averaging process. The computer program was used to investigate the distance required to achieve a fully-developed particle flow in the straight entry channel as well as the variation of the deposition rate around the bend. The simulations showed good agreement with the experimental results. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most important issues facing the helicopter industry today is helicopter noise, in particular transonic rotor noise. It is the main factor limiting cruise speeds, and there is real demand for efficient and reliable prediction methods which can be used in the rotor design process. This paper considers the Ffowcs Williams-Hawkings equation applied to a permeable control surface. The surface is chosen to be as small as possible, while enclosing both the blade and any transonic flow regions. This allows the problematic quadrupole term to always be neglected, and requires only near field CFD input data. It is therefore less computationally intensive than existing prediction methods, and moreover retains the physical interpretation of the sources in terms of thickness, loading and shock-associated noise. A computer program has been developed which implements the permeable surface form of retarded time formulation. The program has been validated and subsequently used to validate an acoustic 2-D CFD code. It is fast and reliable for subsonic motion, but it is demonstrated that it cannot be used at high subsonic or supersonic speeds. A second computer program implementing a more general formulation has also been developed and is presently being validated. This general formulation can be applied at high subsonic and supersonic speeds, except under one specific condition. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discipline of Artificial Intelligence (AI) was born in the summer of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century has passed, and AI has turned into an important field whose influence on our daily lives can hardly be overestimated. The original view of intelligence as a computer program - a set of algorithms to process symbols - has led to many useful applications now found in internet search engines, voice recognition software, cars, home appliances, and consumer electronics, but it has not yet contributed significantly to our understanding of natural forms of intelligence. Since the 1980s, AI has expanded into a broader study of the interaction between the body, brain, and environment, and how intelligence emerges from such interaction. This advent of embodiment has provided an entirely new way of thinking that goes well beyond artificial intelligence proper, to include the study of intelligent action in agents other than organisms or robots. For example, it supplies powerful metaphors for viewing corporations, groups of agents, and networked embedded devices as intelligent and adaptive systems acting in highly uncertain and unpredictable environments. In addition to giving us a novel outlook on information technology in general, this broader view of AI also offers unexpected perspectives into how to think about ourselves and the world around us. In this chapter, we briefly review the turbulent history of AI research, point to some of its current trends, and to challenges that the AI of the 21st century will have to face. © Springer-Verlag Berlin Heidelberg 2007.