182 resultados para Computational topology
em Cambridge University Engineering Department Publications Database
Resumo:
A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.
Resumo:
This article describes a computational study of viscous effects on lobed mixer flowfields. The computations, which were carried out using a compressible, three-dimensional, unstructured-mesh Navier-Stokes solver, were aimed at assessing the impacts on mixer performance of inlet boundary-layer thickness and boundary-layer separation within the lobe. The geometries analyzed represent a class of lobed mixer configurations used in turbofan engines. Parameters investigated included lobe penetration angles from 22 to 45 deg, stream-to-stream velocity ratios from 0.5 to 1.0, and two inlet boundary-layer displacement thicknesses. The results show quantitatively the increasing influence of viscous effects as lobe penetration angle is increased. It is shown that the simple estimate of shed circulation given by Skebe et al. (Experimental Investigation of Three-Dimensional Forced Mixer Lobe Flow Field, AIAA Paper 88-3785, July, 1988) can be extended even to situations in which the flow is separated, provided an effective mixer exit angle and height are defined. An examination of different loss sources is also carried out to illustrate the relative contributions of mixing loss and of boundary-layer viscous effects in cases of practical interest.