2 resultados para Compostos organo-halogenados
em Cambridge University Engineering Department Publications Database
Resumo:
Two series of ferroelectric liquid crystalline organo-siloxanes containing a laterally attached halogen on the phenyl ring have been synthesised and characterised to determine the impact of the siloxane group and the halogen on the mesomorphism and electro-optic switching properties. Both monomesogenic and bimesogenic compounds have been studied. The monomesogenic derivatives were found to be ferroelectric with high tilt and Ps. The tilt angle of 45° and the Ps of 95nC/cm2 are almost temperature independent. The bimesogenic bromo substituted derivatives showed mainly ferroelectric phases about 60°C wide. Maximum values for the spontaneous polarisation and the tilt angle were only slightly influenced by the length of the siloxane spacer. Altering the halogen to a fluorine shifted the liquid cystalline phase slightly to higher temperatures whilst maintaining the mesophase range of 60°C.
Resumo:
Granular reactive materials have higher permeability and are therefore desirable for in situ groundwater pollution control. Three granular bentonites were prepared: an Al-pillared bentonite (PBg), an organo-bentonite (OBg) using a quaternary ammonium cation (QAC), and an inorgano-organo-bentonite (IOBg), using both the pillaring agent and the QAC. Powdered IOB (IOBp) was also prepared to test the effect of particle size. The modified bentonites were characterised with X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and uniaxial compression tests. The d-spacing increased only with QAC intercalation. The Young's modulus of IOBg was twice as high as OBg. Batch adsorption tests were performed with aqueous multimetal solutions of Pb2+, Cu2+, Cd2+, Zn2+ and Ni2+ ions, with liquid dodecane and with aqueous dodecane solutions. Metal adsorption fit the Langmuir isotherm. Adsorption occurred within 30min for PBg, while the granular organo-bentonite needed at least 12h to reach equilibrium. IOBp had the maximum adsorption capacity at higher metal concentration and lower adsorbent content (Cu2+: 2.2, Ni2+: 1.7, Zn2+: 1.4, Cd2+: 0.9 and Pb2+: 0.7 all in mmolg-1). The dual pillaring of the QAC and Al hydroxide increased the adsorption. The adsorption of liquid dodecane was in the order IOBg>OBg>PBg (3.2>2.7>1.7mmolg-1). Therefore IOBg has potential for the removal of toxic compounds found in soil, groundwater, storm water and wastewater. © 2012 Elsevier B.V.