2 resultados para Complex environment

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An engineering design environment should allow users to design complex engineering systems, to manage and coordinate the designs as they proceed, and to develop and modify the software tools used for designs. These requirements call for a programming environment with an integrated set of software tools of different functionalities. The required functionalities are mainly: the provision of design algorithms based on suitable numeric software, appropriate data structures for the application area, a user-friendly interface, and the provision of a design database for the long term management of the designs generated. The provision of such an integrated design environment in a functional programming environment with particular emphasis on the provision of appropriate control-theoretic data structures and data model is described. Object-orientation is used to model entities in the application domain, which are represented by persistent objects in the database. Structural properties, relationships and operations on entities are modelled through objects and functions classified into strict types with inheritance semantics and a recursive structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite many approaches proposed in the past, robotic climbing in a complex vertical environment is still a big challenge. We present here an alternative climbing technology that is based on thermoplastic adhesive (TPA) bonds. The approach has a great advantage because of its large payload capacity and viability to a wide range of flat surfaces and complex vertical terrains. The large payload capacity comes from a physical process of thermal bonding, while the wide applicability benefits from rheological properties of TPAs at higher temperatures and intermolecular forces between TPAs and adherends when being cooled down. A particular type of TPA has been used in combination with two robotic platforms, featuring different foot designs, including heating/cooling methods and construction of footpads. Various experiments have been conducted to quantitatively assess different aspects of the approach. Results show that an exceptionally high ratio of 500% between dynamic payloads and body mass can be achieved for stable and repeatable vertical climbing on flat surfaces at a low speed. Assessments on four types of typical complex vertical terrains with a measure, i.e., terrain shape index ranging from -0.114 to 0.167, return a universal success rate of 80%-100%. © 2004-2012 IEEE.