20 resultados para Comparaison densité a posteriori

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences. © 2014 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of blind multiuser detection. We adopt a Bayesian approach where unknown parameters are considered random and integrated out. Computing the maximum a posteriori estimate of the input data sequence requires solving a combinatorial optimization problem. We propose here to apply the Cross-Entropy method recently introduced by Rubinstein. The performance of cross-entropy is compared to Markov chain Monte Carlo. For similar Bit Error Rate performance, we demonstrate that Cross-Entropy outperforms a generic Markov chain Monte Carlo method in terms of operation time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we derive the a posteriori probability for the location of bursts of noise additively superimposed on a Gaussian AR process. The theory is developed to give a sequentially based restoration algorithm suitable for real-time applications. The algorithm is particularly appropriate for digital audio restoration, where clicks and scratches may be modelled as additive bursts of noise. Experiments are carried out on both real audio data and synthetic AR processes and Significant improvements are demonstrated over existing restoration techniques. © 1995 IEEE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper describes the architecture of VODIS, a voice operated database inquiry system, and presents some experiments which investigate the effects on performance of varying the level of a priori syntactic constraints. The VODIS system includes a novel mechanism for incorporating context-free grammatical constraints directly into the word recognition algorithm. This allows the degree of a priori constraint to be smoothly varied and provides for the controlled generation of multiple alternatives. The results show that when the spoken input deviates from the predefined task grammar, a combination of weak a priori syntax rules in conjunction with full a posteriori parsing on a lattice of alternative word matches provides the most robust recognition performance. © 1991.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of hidden Markov models is placed in a connectionist framework, and an alternative approach to improving their ability to discriminate between classes is described. Using a network style of training, a measure of discrimination based on the a posteriori probability of state occupation is proposed, and the theory for its optimization using error back-propagation and gradient ascent is presented. The method is shown to be numerically well behaved, and results are presented which demonstrate that when using a simple threshold test on the probability of state occupation, the proposed optimization scheme leads to improved recognition performance.