68 resultados para Column Elements
em Cambridge University Engineering Department Publications Database
Resumo:
The automated detection of structural elements (e.g., columns and beams) from visual data can be used to facilitate many construction and maintenance applications. The research in this area is under initial investigation. The existing methods solely rely on color and texture information, which makes them unable to identify each structural element if these elements connect each other and are made of the same material. The paper presents a novel method of automated concrete column detection from visual data. The method overcomes the limitation by combining columns’ boundary information with their color and texture cues. It starts from recognizing long vertical lines in an image/video frame through edge detection and Hough transform. The bounding rectangle for each pair of lines is then constructed. When the rectangle resembles the shape of a column and the color and texture contained in the pair of lines are matched with one of the concrete samples in knowledge base, a concrete column surface is assumed to be located. This way, one concrete column in images/videos is detected. The method was tested using real images/videos. The results are compared with the manual detection ones to indicate the method’s validity.
Resumo:
The automated detection of structural elements (e.g. concrete columns) in visual data is useful in many construction and maintenance applications. The research in this area is under initial investigation. The authors previously presented a concrete column detection method that utilized boundary and color information as detection cues. However, the method is sensitive to parameter selection, which reduces its ability to robustly detect concrete columns in live videos. Compared against the previous method, the new method presented in this paper reduces the reliance of parameter settings mainly in three aspects. First, edges are located using color information. Secondly, the orientation information of edge points is considered in constructing column boundaries. Thirdly, an artificial neural network for concrete material classification is developed to replace concrete sample matching. The method is tested using live videos, and results are compared with the results obtained with the previous method to demonstrate the new method improvements.