5 resultados para Co-occurrence Relation
em Cambridge University Engineering Department Publications Database
Resumo:
The last few years have seen considerable progress in pedestrian detection. Recent work has established a combination of oriented gradients and optic flow as effective features although the detection rates are still unsatisfactory for practical use. This paper introduces a new type of motion feature, the co-occurrence flow (CoF). The advance is to capture relative movements of different parts of the entire body, unlike existing motion features which extract internal motion in a local fashion. Through evaluations on the TUD-Brussels pedestrian dataset, we show that our motion feature based on co-occurrence flow contributes to boost the performance of existing methods. © 2011 IEEE.
Resumo:
A computer can assist the process of design by analogy by recording past designs. The experience these represent could be much wider than that of designers using the system, who therefore need to identify potential cases of interest. If the computer assists with this lookup, the designers can concentrate on the more interesting aspect of extracting and using the ideas which are found. However, as the knowledge base grows it becomes ever harder to find relevant cases using a keyword indexing scheme without knowing precisely what to look for. Therefore a more flexible searching system is needed.
If a similarity measure can be defined for the features of the designs, then it is possible to match and cluster them. Using a simple measure like co-occurrence of features within a particular case would allow this to happen without human intervention, which is tedious and time- consuming. Any knowledge that is acquired about how features are related to each other will be very shallow: it is not intended as a cognitive model for how humans understand, learn, or retrieve information, but more an attempt to make effective, efficient use of the information available. The question remains of whether such shallow knowledge is sufficient for the task.
A system to retrieve information from a large database is described. It uses co-occurrences to relate keywords to each other, and then extends search queries with similar words. This seems to make relevant material more accessible, providing hope that this retrieval technique can be applied to a broader knowledge base.
Resumo:
In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.