76 resultados para Clothing and dress on television.
em Cambridge University Engineering Department Publications Database
Resumo:
Companies aiming to be 'sustainability leaders' in their sector and governments wanting to support their ambitions need a means to assess the changes required to make a significant difference in the impact of their whole sector. Previous work on scenario analysis/scenario planning demonstrates extensive developments and applications, but as yet few attempts to integrate the 'triple bottom line' concerns of sustainability into scenario planning exercises. This paper, therefore, presents a methodology for scenario analysis of large change to an entire sector. The approach includes calculation of a 'triple bottom line graphic equaliser' to allow exploration and evaluation of the trade-offs between economic, environmental and social impacts. The methodology is applied to the UK's clothing and textiles sector, and results from the study of the sector are summarised. In reflecting on the specific study, some suggestions are made about future application of a similar methodology, including a template of candidate solutions that may lead to significant reduction in impacts. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
A finite element study has been performed on the effects of holes and rigid inclusions on the elastic modulus and yield strength of regular honeycombs under biaxial loading. The focus is on honeycombs that have already been weakened by a small degree of geometrical imperfection, such as a random distribution of fractured cell walls, as these imperfect honeycombs resemble commercially available metallic foams. Hashin-Shtrikman lower and upper bounds and self-consistent estimates of elastic moduli are derived to provide reference solutions to the finite element calculations. It is found that the strength of an imperfect honeycomb is relatively insensitive to the presence of holes and inclusions, consistent with recent experimental observations on commercial aluminum alloy foams.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized 'on', 'adjacent to' and 'away from' the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode. © 2010 Elsevier Ltd.