9 resultados para Classification approach

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic classification using machine learning continues to be an active research area. The majority of work in this area uses off-the-shelf machine learning tools and treats them as black-box classifiers. This approach turns all the modelling complexity into a feature selection problem. In this paper, we build a problem-specific solution to the traffic classification problem by designing a custom probabilistic graphical model. Graphical models are a modular framework to design classifiers which incorporate domain-specific knowledge. More specifically, our solution introduces semi-supervised learning which means we learn from both labelled and unlabelled traffic flows. We show that our solution performs competitively compared to previous approaches while using less data and simpler features. Copyright © 2010 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes a semianalytic slope delay model for CMOS switch-level timing verification. It is characterised by classification of the effects of the input slope, internal size and load capacitance of a logic gate on delay time, and then the use of a series of carefully chosen analytic functions to estimate delay times under different circumstances. In the field of VLSI analysis, this model achieves improvements in speed and accuracy compared with conventional approaches to transistor-level and switch-level simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a novel hierarchical approach to timing verification. Four types of relationship existing among signal paths are distinguished, based on a classification of the degree of interdependency in the circuit. In this way, irrelevant path delays can be excluded through consideration of the interaction between critical paths and others. Furthermore, under suitable conditions, bounded delay values for large hierarchical systems can be deduced using bounded delays determined for their constituent cells. Finally, we discuss the impact on design strategy of the hierarchical delay model presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Holistic representations of natural scenes is an effective and powerful source of information for semantic classification and analysis of arbitrary images. Recently, the frequency domain has been successfully exploited to holistically encode the content of natural scenes in order to obtain a robust representation for scene classification. In this paper, we present a new approach to naturalness classification of scenes using frequency domain. The proposed method is based on the ordering of the Discrete Fourier Power Spectra. Features extracted from this ordering are shown sufficient to build a robust holistic representation for Natural vs. Artificial scene classification. Experiments show that the proposed frequency domain method matches the accuracy of other state-of-the-art solutions. © 2008 Springer Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present in this paper a new multivariate probabilistic approach to Acoustic Pulse Recognition (APR) for tangible interface applications. This model uses Principle Component Analysis (PCA) in a probabilistic framework to classify tapping pulses with a high degree of variability. It was found that this model, achieves a higher robustness to pulse variability than simpler template matching methods, specifically when allowed to train on data containing high variability. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.