7 resultados para Choruses, Secular (Mixed voices, 6 parts) with orchestra.
em Cambridge University Engineering Department Publications Database
Resumo:
A power LDMOS on partial silicon on insulator (PSOI) with a variable low-κ dielectric (VLKD) buried layer and a buried p (BP) layer is proposed (VLKD BPSOI). At a low κ value, the electric field strength in the buried dielectric (EI) is enhanced, and a Si window makes the substrate share the vertical voltage drop, leading to a high vertical breakdown voltage (BV). Moreover, three interface field peaks are introduced by the BP, the Si window, and the VLKD, which modulate the fields in the SOI layer, the VLKD layer, and the substrate; consequently, a high BV is obtained. Furthermore, the BP reduces the specific on-resistance (Ron), and the Si window alleviates the self-heating effect (SHE). The BV for VLKD BPSOI is enhanced by 34.5%, and Ron is decreased by 26.6%, compared with those for the conventional PSOI, and VLKD BPSOI also maintains a low SHE. © 2006 IEEE.
Resumo:
The natural ventilation of a well-mixed, pre-heated room with a point source of heating, and openings at the base and roof is investigated. The transient draining associated with the room being warmer than the exterior combined with the convective ow produced by the point source of heat leads to a fascinating series of transient ow regimes as the system evolves to the two-layer steady-state regime described by Linden, Lane-Ser_ and Smeed [1]. As the room begins to ventilate, a turbulent plume rises from the point source of heat to the ceiling, and typically forms a deepening layer of hot air. However, with a weak heat source, then at some point the ascending plume will intrude beneath the layer of original uid. Otherwise, the ascending plume always reaches the top of the room as the system evolves to a steady state. We develop a simpli_ed model of the transient evolution and test this with some new laboratory experiments. We conclude with a discussion of the implications of our results for real buildings.
Resumo:
Desired performance of unpressurized integral collector storage systems hinges on the appropriate selection of storage volume and the immersed heat exchanger. This paper presents analytical results expressing the relation between storage volume, number of heat exchanger transfer units and temperature limited performance. For a system composed of a single storage element, the limiting behavior of a perfectly stratified storage element is shown to be superior to a fully-mixed storage element, consistent with more general analysis of thermal storage. Since, however, only the fully-mixed limit is readily obtainable in a physical system, the present paper also examines a division of the storage volume into separate compartments. This multi-element storage system shows significantly improved discharge characteristics as a result of improved elemental area utilization and temperature variation between elements, comparable in many cases to a single perfectly-stratified storage element. In addition, the multi-element system shows increased robustness with respect to variations in heat exchanger effectiveness and initial storage temperature.
Resumo:
To extract gas from hydrate reservoirs, it has to be dissociated in situ. This endothermic dissociation process absorbs heat energy from the formation and pore fluid. The heat transfer governs the dissociation rate, which is proportional to the difference between the actual temperature and the equilibrium temperature. This study compares three potential gas production schemes from hydrate-bearing soil, where the radial heat transfer is governing. Cylindrical samples with 40% pore-filling hydrate saturation were tested. The production tests were carried out over 90 min by dissociating the hydrate from a centered miniature wellbore, by either lowering the pressure to 6, 4, or 6 MPa with simultaneous heating of the wellbore to 288 K. All tests were replicated by a numerical simulation. With additional heating at the same wellbore pressure, the gas production from hydrates could, on average, be increased by 1.8 and 3.6 times in the simulation and experiments, respectively. If the heat influx from the outer boundary is limited, a simulation showed that the specific heat of the formation is rapidly used up when the wellbore is only depressurized and not heated. © 2012 American Chemical Society.
Resumo:
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.
Resumo:
The adaptation of robots to changing tasks has been explored in modular self-reconfigurable robot research, where the robot structure is altered by adapting the connectivity of its constituent modules. As these modules are generally complex and large, an upper bound is imposed on the resolution of the built structures. Inspired by growth of plants or animals, robotic body extension (RBE) based on hot melt adhesives allows a robot to additively fabricate and assemble tools, and integrate them into its own body. This enables the robot to achieve tasks which it could not achieve otherwise. The RBE tools are constructed from hot melt adhesives and therefore generally small and only passive. In this paper, we seek to show physical extension of a robotic system in the order of magnitude of the robot, with actuation of integrated body parts, while maintaining the ability of RBE to construct parts with high resolution. Therefore, we present an enhancement of RBE based on hot melt adhesives with modular units, combining the flexibility of RBE with the advantages of simple modular units. We explain the concept of this new approach and demonstrate with two simple unit types, one fully passive and the other containing a single motor, how the physical range of a robot arm can be extended and additional actuation can be added to the robot body. © 2012 IEEE.
Resumo:
The work in this paper forms part of a project on the use of large eddy simulation (LES) for broadband rotor-stator interaction noise prediction. Here we focus on LES of the flow field near a fan blade trailing edge. The first part of the paper aims to evaluate LES suitability for predicting the near-field velocity field for a blunt NACA-0012 airfoil at moderate Reynolds numbers (2× 10 5 and 4× 10 5). Preliminary computations of turbulent mean and root-mean-square velocities, as well as energy spectra at the trailing edge, are compared with those from a recent experiment.1 The second part of the paper describes preliminary progress on an LES calculation of the fan wakes on a fan rig. 2 The CFD code uses a mixed element unstructured mesh with a median dual control volume. A wall-adapting local eddy-viscosity sub-grid scale model is employed. A very small amount of numerical dissipation is added in the numerical scheme to keep the compressible solver stable. Further results for the fan turbulentmean and RMS velocity, and especially the aeroacoustics field will be presented at a later stage. Copyright © 2008 by Qinling LI, Nigel Peake & Mark Savill.