31 resultados para Chapman, Hayward

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid crystal on silicon (LCOS) is one of the most exciting technologies, combining the optical modulation characteristics of liquid crystals with the power and compactness of a silicon backplane. The objective of our work is to improve cell assembly and inspection methods by introducing new equipment for automated assembly and by using an optical inspection microscope. A Suss-Micro'Tec Universal device bonder is used for precision assembly and device packaging and an Olympus BX51 high resolution microscope is employed for device inspection. ©2009 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid crystal on silicon (LCOS) for phase-only holography is ideally made to better optical tolerance than that for conventional amplitude modulating applications. Die-level assembly is suited to custom devices and pre-production prototypes because of its flexibility and efficiency in conserving the silicon backplane. Combined with automated assembly, it will allow high reproducibility and fast turnaround time, paving the way for pre-production testing and customer sampling before mass production. Pre-assembly optical testing is the key element in the process. By taking into account the flatness of both the backplane and the front glass plate, we have assembled high quality LCOS devices. We have reached our aim of less than one quarter wavelength phase distortion across the active area. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss some fundamental characteristics of a phase-modulating device suitable to holographically project a monochrome video frame with 1280 x 720 resolution. The phase-modulating device is expected to be a liquid crystal over silicon chip with silicon area similar to that of commercial devices. Its basic characteristics, such as number of pixels, bits per pixel, and pixel dimensions, are optimized in terms of image quality and optical efficiency. Estimates of the image quality are made from the noise levels and contrast, while efficiency is calculated by considering the beam apodization, device dead space, diffraction losses, and the sinc envelope.