28 resultados para Change Impact
em Cambridge University Engineering Department Publications Database
Resumo:
This paper presents a method to manage Engineering Changes (EC) during the product development process, which is seen to be a complex system. The ability to manage engineering changes efficiently reflects the agility of an enterprise. Although there are unnecessary ECs that should be avoided, many of the ECs are actually beneficial. The proposed method explores the linkages between the product development process features and product specifications dependencies. It suggests ways of identifying and managing specification dependencies to support the Engineering Change Management process. Furthermore, the impacts of an EC on the product specifications as well as on the process organization are studied. © 2009 World Scientific Publishing Company.
Resumo:
This paper explores the current state-of-the-art in performance indicators and use of probabilistic approaches used in climate change impact studies. It presents a critical review of recent publications in this field, focussing on (1) metrics for energy use for heating and cooling, emissions, overheating and high-level performance aspects, and (2) uptake of uncertainty and risk analysis. This is followed by a case study, which is used to explore some of the contextual issues around the broader uptake of climate change impact studies in practice. The work concludes that probabilistic predictions of the impact of climate change are feasible, but only based on strict and explicitly stated assumptions. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Change propagates, potentially affecting many aspects of a design and requiring much rework to implement. This article introduces a cross-domain approach to decompose a design and identify possible change propagation linkages, complemented by an interactive tool that generates dynamic checklists to assess change impact. The approach considers the information domains of requirements, functions, components, and the detail design process. Laboratory experiments using a vacuum cleaner suggest that cross-domain modelling helps analyse a design to create and capture the information required for change prediction. Further experiments using an electronic product show that this information, coupled with the interactive tool, helps to quickly and consistently assess the impact of a proposed change. © 2012 Springer-Verlag London Limited.
Resumo:
Climate change is becoming a serious issue for the construction industry, since the time scales at which climate change takes place can be expected to show a true impact on the thermal performance of buildings and HVAC systems. In predicting this future building performance by means of building simulation, the underlying assumptions regarding thermal comfort conditions and the related heating, ventilating and air conditioning (HVAC) control set points become important. This article studies the thermal performance of a reference office building with mixedmode ventilation in the UK, using static and adaptive thermal approaches, for a series of time horizons (2020, 2050 and 2080). Results demonstrate the importance of the implementation of adaptive thermal comfort models, and underpin the case for its use in climate change impact studies. Adaptive thermal comfort can also be used by building designers to make buildings more resilient towards change. © 2010 International Building Performance Simulation Association (IBPSA).