18 resultados para Cesarean Delivery
em Cambridge University Engineering Department Publications Database
Resumo:
We demonstrate the first full-duplex wireless-over-fibre transmission between a central station and a CWDM ring architecture with remote 40 GHz LO delivery using a bi-directional semiconductor optical amplifier. © 2005 Optical Society of America.
Resumo:
Previous research has shown that hydraulic systems offer potentially the lightest and smallest regenerative braking technology for heavy goods vehicles. This paper takes the most practical embodiment of a hydraulic system for an articulated urban delivery vehicle and investigates the best specification for the various components, based on a simulated stop-start cycle. The potential energy saving is quantified. © 2011 IEEE.
Resumo:
A voltage sensing buck converter-based technique for maximum solar power delivery to a load is presented. While retaining the features and advantages of the incremental conductance algorithm, this technique is more desirable because of single sensor use. The technique operates by maximising power at the buck converter output instead of the input.
Resumo:
Biodegradable polymers can be applied to a variety of implants for controlled and local drug delivery. The aim of this study is to develop a biodegradable and nanoporous polymeric platform for a wide spectrum of drug-eluting implants with special focus on stent-coating applications. It was synthesized by poly(DL-lactide-co-glycolide) (PLGA 65:35, PLGA 75:25) and polycaprolactone (PCL) in a multilayer configuration by means of a spin-coating technique. The antiplatelet drug dipyridamole was loaded into the surface nanopores of the platform. Surface characterization was made by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). Platelet adhesion and drug-release kinetic studies were then carried out. The study revealed that the multilayer films are highly nanoporous, whereas the single layers of PLGA are atomically smooth and spherulites are formed in PCL. Their nanoporosity (pore diameter, depth, density, surface roughness) can be tailored by tuning the growth parameters (eg, spinning speed, polymer concentration), essential for drug-delivery performance. The origin of pore formation may be attributed to the phase separation of polymer blends via the spinodal decomposition mechanism. SE studies revealed the structural characteristics, film thickness, and optical properties even of the single layers in the triple-layer construct, providing substantial information for drug loading and complement AFM findings. Platelet adhesion studies showed that the dipyridamole-loaded coatings inhibit platelet aggregation that is a prerequisite for clotting. Finally, the films exhibited sustained release profiles of dipyridamole over 70 days. These results indicate that the current multilayer phase therapeutic approach constitutes an effective drug-delivery platform for drug-eluting implants and especially for cardiovascular stent applications.