56 resultados para Ceramic porosity

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat dissipation capability of highly porous cellular metal foams with open cells subject to forced air convection is studied using a combined experimental and analytical approach. The cellular morphologies of six FeCrAlY (an iron-based alloy) foams and six copper alloy foams with a range of pore sizes and porosities are quantified with the scanning electronic microscope and image analysis. Experimental measurements on pressure drop and heat transfer for copper foams are carried out. A numerical model for forced convection across open-celled metal foams is subsequently developed, and the predictions are compared with those measured. Reasonably good agreement with test data is obtained, given the complexity of the cellular foam morphology and the associated momentum/energy transport. The results show that cell size has a more significant effect on the overall heat transfer than porosity. An optimal porosity is obtained based on the balance between pressure drop and overall heat transfer, which decreases as the Reynolds number is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study is to assess the capabilities of a recently developed mechanism-based model for inelastic deformation and damage in structural ceramics. In addition to conventional lattice plasticity, the model accounts for microcrack growth and coalescence as well as granular flow following comminution. The assessment is made through a coupled experimental/computational study of the indentation response of a commercial armor ceramic. The experiments include examinations of subsurface damage zones along with measurements of residual surface profiles and residual near-surface stresses. Extensive finite element computations are conducted in parallel. Comparisons between experiment and simulation indicate that the most discriminating metric in the assessment is the spatial extent of subsurface damage following indentation. Residual stresses provide additional validation. In contrast, surface profiles of indents are dictated largely by lattice plasticity and thus provide minimal additional insight into the inelastic deformation resulting from microcracking or granular flow. A satisfactory level of correlation is obtained using property values that are either measured directly or estimated from physically based arguments, without undue reliance on adjustable (nonphysical) parameters. © 2011 The American Ceramic Society.