2 resultados para Ceramic floors - Cooperation between industries

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To address future uncertainty within strategy and innovation, managers extrapolate past patterns and trends into the future. Several disciplines make use of lifecycles, often with a linear sequence of identified phases, to make predictions and address likely uncertainties. Often the aggregation of several cycles is then interpreted as a new cycle - such as product lifecycles into an industry lifecycle. However, frequently different lifecycle terms - technology, product, industry - are used interchangeably and without clear definition. Within the interdisciplinary context of technology management, this juxtaposition of dynamics can create confusion, rather than clarification. This paper explores some typical dynamics associated with technology-based industries, using illustrative examples from the automotive industry. A wide range of dimensions are seen to influence the path of a technology-based industry, and stakeholders need to consider the likely causality and synchronicity of these. Some curves can simply present the aggregation of components; other dynamics incur time lags, rather than being superimposed, but still have a significant impact. To optimise alignment of the important dimensions within any development, and for future strategy decisions, understanding these interactions will be critical. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.