6 resultados para Central pulse pressure
em Cambridge University Engineering Department Publications Database
Resumo:
The fluid dynamic operation of a valveless pulse combustor has been studied experimentally and numerically. Through phase-locked chemiluminescence and pressure measurements it is shown that mechanical energy is created periodically in the flame surface, with an efficiency of 1.6%. This mechanical energy leaves the pulse combustor through unsteady jets at the aerovalve inlet and the tailpipe exit stations. Two thermodynamically distinct flows are identified: a flow that is transported from inlet to exit and participates in combustion along the way, and a flow that is ingested and then ejected from the combustor without undergoing combustion. It is the latter of these two flows which has the greatest quantity of net work done on it. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Colliding pulse modelocking is demonstrated for the first time in quantum dot lasers. Using 3.9 mm-long devices with a 245 pm-long central absorber, 7 ps pulses at a repetition rate of 20 GHz is obtained. For Gaussian pulses a time-bandwidth product close to the Fourier transform limit is determined. These results confirm the potential of quantum dot lasers for high repetition rate harmonic modelocking.
Resumo:
This paper describes an experimental investigation into the effect of unsteady fuel injection on the performance of a valveless pulse combustor. Two fuel systems were used. The first delivered a steady flow of ethylene through choked nozzles, and the second delivered ethylene in discrete pulses using high-frequency fuel injectors. Both fuel systems injected directly into the combustion chamber. The high-frequency fuel injectors were phase locked to the unsteady pressure measured on the inlet pipe. The phase and opening pulse width of the injectors and the time-averaged fuel mass flow rate through the injectors were independently varied. For a given fuel mass flow rate, it is shown that the maximum pressure amplitude occurs when fuel is injected during flow reversal in the inlet pipe, i.e. flow direction is out of the combustor. The optimal fuel injection pulse width is shown to be approximately 2/9th of the cycle. It should, however, be noted that this is the shortest time in which the injectors can reliably be fully opened and closed. It is shown that by using unsteady fuel injection the mass flow rate of fuel needed to achieve a given amplitude of unsteady pressure can be reduced by up to 65% when compared with the steady fuel injection case. At low fuel mass flow rates unsteady fuel injection is shown to raise the efficiency of the combustor by a factor of 7 decreasing to a factor of 2 at high fuel mass flow rates. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
If the conventional steady flow combustor of a gas turbine is replaced with a device which achieves a pressure gain during the combustion process then the thermal efficiency of the cycle is raised. All such 'Pressure Gain Combustors' (e.g. PDEs, pulse combustors or wave rotors) are inherently unsteady flow devices. For such a device to be practically installed in a gas turbine it is necessary to design a downstream row of turbine vanes which will both accept the combustors unsteady exit flow and deliver a flow which the turbine rotor can accept. The design requirements of such a vane are that its exit flow both retains the maximum time-mean stagnation pressure gain (the pressure gain produced by the combustor is not lost) and minimises the amplitude of unsteadiness (reduces unsteadiness entering the downstream rotor). In this paper the exit of the pressure gain combustor is simulated with a cold unsteady jet. The first stage vane is simulated by a one-dimensional choked ejector nozzle with no turning. The time-mean and rms stagnation pressure at nozzle exit is measured. A number of geometric configurations are investigated and it is shown that the optimal geometry both maximizes time mean stagnation pressure gain (75% of that in the exit of the unsteady jet) and minimizes the amplitude of unsteadiness (1/3 of that in the primary jet). The structure of the unsteady flow within the ejector nozzle is determined computationally. Copyright © 2009 by J Heffer and R Miller.
Resumo:
Replacing a conventional combustor in a gas turbine with one that produces a pressure gain could significantly raise cycle efficiency. For this efficiency gain to be achieved the exit flow from the combustor must be coupled to the downstream turbine such that the pressure gain produced by the combustor is retained and such that the turbine efficiency is maintained. The exit flow from a pressure gain combustor will often contain a high velocity unsteady jet. It has previously been proposed that ejectors should be used to harness the energy in the unsteady jet, this paper proposes combining an ejector with the first stage vane, producing a single compact component that preserves the combustion driven pressure gain and delivers a suitable flow to the turbine so that its efficiency is not compromised. This novel component has been experimentally tested for the first time. The performance of this first prototype design is found to be low due to high levels of loss generated by secondary flows. However possible mitigation strategies are discussed. It is shown that the unsteadiness at exit form the ejector-vane is reduced compared to the inlet flow. If a pulse combustor were incorporated into a gas turbine, it is unlikely that the level of unsteadiness experienced in a downstream rotor will be significantly larger that that due to the periodic passing of upstream wakes. Copyright © 2010 by Jonathan Heffer.