4 resultados para Celo Mine
em Cambridge University Engineering Department Publications Database
Resumo:
An anomaly detection approach is considered for the mine hunting in sonar imagery problem. The authors exploit previous work that used dual-tree wavelets and fractal dimension to adaptively suppress sand ripples and a matched filter as an initial detector. Here, lacunarity inspired features are extracted from the remaining false positives, again using dual-tree wavelets. A one-class support vector machine is then used to learn a decision boundary, based only on these false positives. The approach exploits the large quantities of 'normal' natural background data available but avoids the difficult requirement of collecting examples of targets in order to train a classifier. © 2012 The Institution of Engineering and Technology.
Resumo:
Operational uncertainties such as throttle excursions, varying inlet conditions and geometry changes lead to variability in compressor performance. In this work, the main operational uncertainties inherent in a transonic axial compressor are quantified to deter- mine their effect on performance. These uncertainties include the effects of inlet distortion, metal expansion, ow leakages and blade roughness. A 3D, validated RANS model of the compressor is utilized to simulate these uncertainties and quantify their effect on polytropic efficiency and pressure ratio. To propagate them, stochastic collocation and sparse pseudospectral approximations are used. We demonstrate that lower-order approximations are sufficient as these uncertainties are inherently linear. Results for epistemic uncertainties in the form of meshing methodologies are also presented. Finally, the uncertainties considered are ranked in order of their effect on efficiency loss. © 2012 AIAA.