37 resultados para Carpenter, Liz

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial light modulators based around liquid crystal on silicon have found use in a variety of telecommunications applications, including the optimization of multimode fibers, free-space communications, and wavelength selective switching. Ferroelectric liquid crystals are attractive in these areas due to their fast switching times and high phase stability, but the necessity for the liquid crystal to spend equal time in each of its two possible states is an issue of practical concern. Using the highly parallel nature of a graphics processing unit architecture, it is possible to calculate DC balancing schemes of exceptional quality and stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific fibre modes are deliberately excited in a few-mode and multimode fibre using holography. The same system is also used to demonstrate holography's ability to detect and route individual fibre modes. © 2011 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each mode of a multimode fibre is excited using binary phase patterns on a Spatial Light Modulator and verified by observation of the near-field leaving the fibre and analysis of the step response. © 2011 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimization of the bandwidth of a 2 km 50 μm multimode fiber at 850 nm is investigated theoretically and experimentally by steering a single spot, or two in antiphase spots across the core of the fiber in two dimensions using a ferroelectric liquid-crystal-based spatial light modulator. This method not only allows an optimal offset launch position to be chosen in situ but can also characterize the geometry and position of the core, identify defects, and measure the maximum differential mode delay. Its ability to selectively excite specific mode groups is also of relevance to mode-group division multiplexing. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each mode of a 2 km 50 μ OM2 grade multimode fiber is precisely excited at multiple orientations using a binary phase spatial light modulator (SLM) to generate a detailed modal description of the fiber and minimize modal dispersion over 4.5 THz of optical bandwidth. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spatial light modulator at the transmitter is used in conjunction with a standard multimode coupler at the receiver to modally multiplex 2 × 12.5 Gb/s nonreturn-to-zero channels using direct detection over 2 km of 940 MHz OM2 fiber without electronic processing. The wavelength dependence of this technique over a 4.5 THz band is also investigated. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A binary grating on a Spatial Light Modulator generates twin antiphase spots with adjustable positions across the core of a multimode fibre allowing adaptive excitation of antisymmetric mode-groups for improving modal dispersion or modal multiplexing. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Mode Selective Switch based around an LCoS Spatial Light Modulator is demonstrated to optically demultiplex modes with the same propagation constants to the same output fibres, using a common phase mask for all channels. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Spatial Light Modulator and a non-specialized multimode coupler are used together to provide sufficient channel isolation and modal bandwidth for 2x12.5Gbps NRZ over 2km of standard graded-index multimode fibre without DSP. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of an SLM-based mode demultiplexer is discussed and mode division multiplexing is performed using the LP0,1 and LP 0,2 modes, representing the first demonstration to propagate channels on modes with the same azimuthal index. Mode multiplexed transmission over 2 km of 50-μm OM2 fiber demonstrates a modal selectivity of 16 dB and an OSNR penalty of 1.5 dB for the transmission of 2×56 Gb/s QPSK signals. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador: