13 resultados para Capponi, Niccolò, 1473-1529.

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the first international Visualization Summit, more than 100 international researchers and practitioners defined and assessed nine original and important research goals in the context of Visualization Science, and proposed methods for achieving these goals by 2010. The synthesis of the whole event is presented in the 10th research goal. This article contributes a building block for systemizing visualization research by proposing mutually elaborated research goals with defined milestones. Such a consensus on where to go together is only one step toward establishing visualization science in the long-term perspective as a discipline with comparable relevance to chemistry, mathematics, language, or history. First, this article introduces the conference setting. Second, it describes the research goals and findings from the nine workshops. Third, a survey among 62 participants about the originality and importance of each research goal is presented and discussed. Finally, the article presents a synthesis of the nine research goals in the form of a 10th research goal, namely Visualizing Future Cities. The article is relevant for visualization researchers, trend scouts, research programme directors who define the topics that get funds. © 2007 Palgr aveMacmillan Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report on the successful low-temperature growth of zinc oxide nanowires (ZnONWs) on silicon-on-insulator (SOI) CMOS micro-hotplates and their response, at different operating temperatures, to hydrogen in air. The SOI micro-hotplates were fabricated in a commercial CMOS foundry followed by a deep reactive ion etch (DRIE) in a MEMS foundry to form ultra-low power membranes. The micro-hotplates comprise p+ silicon micro-heaters and interdigitated metal electrodes (measuring the change in resistance of the gas sensitive nanomaterial). The ZnONWs were grown as a post-CMOS process onto the hotplates using a CMOS friendly hydrothermal method. The ZnONWs showed a good response to 500 to 5000 ppm of hydrogen in air. We believe that the integration of ZnONWs with a MEMS platform results in a low power, low cost, hydrogen sensor that would be suitable for handheld battery-operated gas sensors. © 2011 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural ventilation of a building, flanked by others forming urban canyons and driven by the combined forces of wind and thermal buoyancy, has been studied experimentally at small scale. The aim was to improve our understanding of the effect of the urban canyon geometry on passive building ventilation. The steady ventilation of an isolated building was observed to change dramatically, both in terms of the thermal stratification and airflow rate, when placed within the confines of urban canyons. The ventilation flows and internal stratifications observed at small scale are presented for a range of canyon widths (building densities) and wind speeds. Two typical opening arrangements are considered. Flanking an otherwise isolated building with others of similar geometry as in a typical urban canyon was shown to reverse the effect of wind on the thermally-driven ventilation. As a consequence, neglecting the surrounding geometry when designing naturally-ventilated buildings may result in poor ventilation. Further implications are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.