3 resultados para CROSS-LINKED CHAINS

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N in and N out, the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N out, with the higher value of N out providing a stronger material. We also find that, if N in is smaller than N out, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. © 2011 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in nonpolar organic solvents. The active conjugated groups, which are highly attracted to the graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and cross-linked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that the pyrene-siloxane surfactant is very effective in dispersing multiwall nanotubes, while the porphyrin-siloxane makes single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fibrous collagenous networks are not only stiff but also tough, due to their complex microstructures. This stiff yet tough behavior is desirable for both medical and military applications but it is difficult to reproduce in engineering materials. While the nonlinear hyperelastic behavior of fibrous networks has been extensively studied, the understanding of toughness is still incomplete. Here, we identify a microstructure mimicking the branched bundles of a natural type I collagen network, in which partially cross-linked long fibers give rise to novel combinations of stiffness and toughness. Finite element analysis shows that the stiffness of fully cross-linked fibrous networks is amplified by increasing the fibril length and cross-link density. However, a trade-off of such stiff networks is reduced toughness. By having partially cross-linked networks with long fibrils, the networks have comparable stiffness and improved toughness as compared to the fully cross-linked networks. Further, the partially cross-linked networks avoid the formation of kinks, which cause fibril rupture during deformation. As a result, the branching allows the networks to have stiff yet tough behavior.