67 resultados para COMPETING OXYGEN TRANSFERS
em Cambridge University Engineering Department Publications Database
Resumo:
This work describes the deposition, annealing and characterisation of semi-insulating oxygen-doped silicon films at temperatures compatible with polysilicon circuitry on glass. The semi-insulating layers are deposited by the plasma enhanced chemical vapour deposition technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures at a temperature of 350 °C. The as-deposited films are then furnace annealed at 600 °C which is the maximum process temperature. Raman analysis shows the as-deposited and annealed films to be completely amorphous. The most important deposition variable is the N2O SiH4 gas ratio. By varying the N2O SiH4 ratio the conductivity of the annealed films can be accurately controlled, for the first time, down to a minimum of ≈10-7Ω-1cm-1 where they exhibit a T -1 4 temperature dependence indicative of a hopping conduction mechanism. Helium dilution of the reactant gases is shown to improve both film uniformity and reproducibility. A model for the microstructure of these semi-insulating amorphous oxygen-doped silicon films is proposed to explain the observed physical and electrical properties. © 1995.
Resumo:
This work describes the annealing and characterisation of semi-insulating oxygen-doped silicon films deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The maximum process temperature is chosen to be compatible with large area polycrystalline silicon (poly-Si) circuitry on glass. The most important deposition variable is shown to be the N2O SiH4 gas ratio. Helium dilution results in improved film uniformity and reproducibility. Raman analysis shows the 'as-deposited' and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties. © 1995.
Resumo:
Chemical looping combustion (CLC) is a means of combusting carbonaceous fuels, which inherently separates the greenhouse gas carbon dioxide from the remaining combustion products, and has the potential to be used for the production of high-purity hydrogen. Iron-based oxygen carriers for CLC have been subject to considerable work; however, there are issues regarding the lifespan of iron-based oxygen carriers over repeated cycles. In this work, haematite (Fe2O3) was reduced in an N2+CO+CO2 mixture within a fluidised bed at 850°C, and oxidised back to magnetite (Fe3O4) in a H2O+N2 mixture, with the subsequent yield of hydrogen during oxidation being of interest. Subsequent cycles started from Fe3O4 and two transition regimes were studied; Fe3O4↔Fe0.947O and Fe 3O4↔Fe. Particles were produced by mechanical mixing and co-precipitation. In the case of co-precipitated particles, Al was added such that the ratio of Fe:Al by weight was 9:1, and the final pH of the particles during precipitation was investigated for its subsequent effect on reactivity. This paper shows that co-precipitated particles containing additives such as Al may be able to achieve consistently high H2 yields when cycling between Fe3O4 and Fe, and that these yields are a function of the ratio of [CO2] to [CO] during reduction, where thermodynamic arguments suggest that the yield should be independent of this ratio. A striking feature with our materials was that particles made by mechanical mixing performed much better than those made by co-precipitation when cycling between Fe3O4 and Fe0.947O, but much worse than co-precipitated particles when cycling between Fe3O 4 and Fe.