5 resultados para CO ALLOY CATALYSTS

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature (∼450 °C), scalable chemical vapor deposition of predominantly monolayer (74%) graphene films with an average D/G peak ratio of 0.24 and domain sizes in excess of 220 μm(2) is demonstrated via the design of alloy catalysts. The admixture of Au to polycrystalline Ni allows a controlled decrease in graphene nucleation density, highlighting the role of step edges. In situ, time-, and depth-resolved X-ray photoelectron spectroscopy and X-ray diffraction reveal the role of subsurface C species and allow a coherent model for graphene formation to be devised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We systematically study the growth of carbon nanotube forests by chemical vapor deposition using evaporated monometallic or bimetallic Ni, Co, or Fe films supported on alumina. Our results show two regimes of catalytic activity. When the total thickness of catalyst is larger than nominally 1nm, bimetallic catalysts tend to outperform the equivalent layers of a single metal, yielding taller forests of multi-walled carbon nanotubes (CNTs). In contrast, for layers thinner than ~1nm, bimetallic catalysts are notably less active than individually. However, the amount of small diameter and single-walled CNTs is significantly increased. This possible transition at ~1nm might be related to different catalyst composition after annealing, depending whether or not the films overlap during evaporation and alloy during catalyst formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.