211 resultados para CHARGE PROPAGATION
em Cambridge University Engineering Department Publications Database
Resumo:
An experimental technique has been developed in order to mimic the effect of landmine loading on materials and structures to be studied in a laboratory setting, without the need for explosives. Compressed gas is discharged beneath a sand layer, simulating the dynamic flow generated by a buried explosive. High speed photography reveals that the stages of soil motion observed during a landmine blast are replicated. The effect of soil saturation and the depth of the sand layer on sand motion are evaluated. Two series of experiments have been performed with the buried charge simulator to characterise subsequent impact of the sand. First, the time variation in pressure and impulse during sand impact on a stationary target is evaluated using a Kolsky bar apparatus. It is found that the pressure pulse imparted to the Kolsky bar consists of two phases: an initial transient phase of high pressure (attributed to wave propagation effects in the impacting sand), followed by a lower pressure phase of longer duration (due to lateral flow of the sand against the Kolsky bar). Both phases make a significant contribution to the total imparted impulse. It is found that wet sand exerts higher peak pressures and imparts a larger total impulse than dry sand. The level of imparted impulse is determined as a function of sand depth, and of stand-off distance between the sand and the impacted end of the Kolsky bar. The second study uses a vertical impulse pendulum to measure the momentum imparted by sand impact to a target which is free to move vertically. The effect of target mass upon imparted momentum is investigated. It is concluded that the laboratory-scale sand impact apparatus is a flexible tool for investigating the interactions between structures and dynamic sand flows. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Turbomachinery noise radiating into the rearward arc is an important problem. This noise is scattered by the trailing edges of the nacelle and the jet exhaust, and interacts with the shear layers between the external flow, bypass stream and jet, en route to the far field. In the past a range of relevant model problems involving semi-infinite cylinders have been solved. However, one limitation of these previous solutions is that they do not allow for the jet nozzle protruding a finite distance beyond the end of the nacelle (or in certain configurations being buried a finite distance upstream). With this in mind, we have used the matrix Wiener-Hopf technique to allow precisely this finite nacelle-jet nozzle separation to be included. We have previously reported results for the case of hard-walled ducts, which requires factorisation of a 2 × 2 matrix. In this paper we extend this work by allowing one of the duct walls, in this case the outer wall of the jet pipe, to be acoustically lined. This results in the need to factorise a 3 × 3 matrix, which is completed by use of a combination of pole-removal and Pad́e approximant techniques. Sample results are presented, investigating in particular the effects of exit plane stagger and liner impedance. Here we take the mean flow to be zero, but extension to nonzero Mach numbers in the core and bypass flow has also been completed. Copyright © 2009 by Nigel Peake & Ben Veitch.
Resumo:
A micromachined electrometer, based on the concept of a variable capacitor, has been designed, modeled, fabricated, and tested. The device presented in this paper functions as a modulated variable capacitor, wherein a dc charge to be measured is up-modulated and converted to an ac voltage output, thus improving the signal-to-noise ratio. The device was fabricated in a commercial standard SOI micromachining process without the need for any additional processing steps. The electrometer was tested in both air and vacuum at room temperature. In air, it has a charge-to-voltage conversion gain of 2.06 nV/e, and a measured charge noise floor of 52.4 e/rtHz. To reduce the effects of input leakage current, an electrically isolated capacitor has been introduced between the variable capacitor and input to sensor electronics. Methods to improve the sensitivity and resolution are suggested while the long-term stability of these sensors is modeled and discussed. © 2006 IEEE.