12 resultados para CH4 fluxes

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a 5-step reduced chemical kinetic mechanism involving nine species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions, for conditions relevant for stationary gas-turbine combustion. This reduced mechanism is obtained from a 49-reaction skeletal mechanism which is a modified subset of GRI Mech 3.0. The skeletal and reduced mechanisms are validated for laminar flame speeds, ignition delay times and flame structure with available experimental data, and using computational results with a comprehensive set of elementary reactions. Overall, both the skeletal and reduced mechanisms show a very good agreement over a wide range of pressure, reactant temperature and fuel mixture composition. © 2012 The Combustion Institute..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing demand for energy and continuing increase in environmental as well as financial cost of use of fossil fuels drive the need for utilization of fuels from sustainable sources for power generation. Development of fuel-flexible combustion systems is vital in enabling the use of sustainable fuels. It is also important that these sustainable combustion systems meet the strict governmental emission legislations. Biogas is considered as one of the viable sustainable fuels that can be used to power modern gas turbines: However, the change in chemical, thermal and transport properties as well as change in Wobbe index due to the variation of the fuel constituents can have a significant effect on the performance of the combustor. It is known that the fuel properties have strong influence on the dynamic flame response; however there is a lack of detailed information regarding the effect of fuel compositions on the sensitivity of the flames subjected to flow perturbations. In this study, we describe an experimental effort investigating the response of premixed biogas-air turbulent flames with varying proportions of CH4 and CO2 to velocity perturbations. The flame was stabilized using a centrally placed conical bluff body. Acoustic perturbations were imposed to the flow using loud speakers. The flame dynamics and the local heat release rate of these acoustically excited biogas flames were studied using simultaneous measurements of OH and H2CO planar laser induced fluorescence. OH* chemiluminescence along with acoustic pressure measurements were also recorded to estimate the total flame heat release modulation and the velocity fluctuations. The measurements were carried out by keeping the theoretical laminar flame speed constant while varying the bulk velocity and the fuel composition. The results indicate that the flame sensitivity to perturbations increased with increased dilution of CH4 by CO2 at low amplitude forcing, while at high amplitude forcing conditions the magnitude of the flame response was independent of dilution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For established axisymmetric turbulent miscible Boussinesq fountains in quiescent uniform environments, expressions are developed for the fluxes of volume, momentum and buoyancy at the outflow from the fountain: the outflow referring to the counterflow at the horizontal plane of the source. The fluxes are expressed in terms of the fountain source conditions and two dimensionless functions of the source Froude number, Fr0: a radial function (relating a horizontal scale of the outflow to the source radius) and a volume flux function (relating the outflow and source volume fluxes). The forms taken by these two functions at low Fr0 and high Fr0 are deduced, thereby providing the outflow fluxes and outflow Froude number solely in terms of the source conditions. For high Fr0, the outflow Froude number, Frout, is shown to be invariant, indicating (by analogy with plumes for which the 'far-field' Froude number is invariant with source Froude number) that the outflow may be regarded as 'far-field' since the fluxes within the fountain have adjusted to attain a balance which is independent of the source conditions. Based on Frout, the fluxes in the plume that forms beyond the fountain outflow are deduced. Finally, from the results of previously published studies, we show that the scalings deduced for fountains are valid for 0.0025 ≲ Fr0 ≲ 1.0 for low Fr0 and Fr0≳ 3.0 for high Fr0. © 2014 Cambridge University Press.