8 resultados para CELLULAR-AUTOMATON MODEL

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

An elastic-plastic constitutive model for transversely isotropic compressible solids (foams) has been developed. A quadratic yield surface with four parameters and one hardening function is proposed. Associated plastic flow is assumed and the yield surface evolves in a self-similar manner calibrated by the uniaxial compressive (or tensile) response of the cellular solid in the axial direction. All material constants in the model (elastic and plastic) can be determined from a combination of a total of four uniaxial and shear tests. The model is used to predict the indentation response of balsa wood to a conical indenter. For the three cone angles considered in this study, very good agreement is found between the experimental measurements and the finite element (FE) predictions of the transversely isotropic cellular solid model. On the other hand, an isotropic foam model is shown to be inadequate to capture the indentation response. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat dissipation capability of highly porous cellular metal foams with open cells subject to forced air convection is studied using a combined experimental and analytical approach. The cellular morphologies of six FeCrAlY (an iron-based alloy) foams and six copper alloy foams with a range of pore sizes and porosities are quantified with the scanning electronic microscope and image analysis. Experimental measurements on pressure drop and heat transfer for copper foams are carried out. A numerical model for forced convection across open-celled metal foams is subsequently developed, and the predictions are compared with those measured. Reasonably good agreement with test data is obtained, given the complexity of the cellular foam morphology and the associated momentum/energy transport. The results show that cell size has a more significant effect on the overall heat transfer than porosity. An optimal porosity is obtained based on the balance between pressure drop and overall heat transfer, which decreases as the Reynolds number is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Vi capsular polysaccharide is a virulence-associated factor expressed by Salmonella enterica serotype Typhi but absent from virtually all other Salmonella serotypes. In order to study this determinant in vivo, we characterised a Vi-positive S. Typhimurium (C5.507 Vi(+)), harbouring the Salmonella pathogenicity island (SPI)-7, which encodes the Vi locus. S. Typhimurium C5.507 Vi(+) colonised and persisted in mice at similar levels compared to the parent strain, S. Typhimurium C5. However, the innate immune response to infection with C5.507 Vi(+) and SGB1, an isogenic derivative not expressing Vi, differed markedly. Infection with C5.507 Vi(+) resulted in a significant reduction in cellular trafficking of innate immune cells, including PMN and NK cells, compared to SGB1 Vi(-) infected animals. C5.507 Vi(+) infection stimulated reduced numbers of TNF-α, MIP-2 and perforin producing cells compared to SGB1 Vi(-). The modulating effect associated with Vi was not observed in MyD88(-/-) and was reduced in TLR4(-/-) mice. The presence of the Vi capsule also correlated with induction of the anti-inflammatory cytokine IL-10 in vivo, a factor that impacted on chemotaxis and the activation of immune cells in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microstructure based acoustic model is introduced, which can be used to optimize the microstructure of cellular materials and thus to obtain their optimal acoustic property. This acoustic model is an unsteady one which is appropriate in the limit of low Reynolds numbers. The model involves three elements. This first involves the propagation of acoustic waves passing the cylinders whose axes are aligned parallel to the direction of propagation. The second model relates to the propagation of acoustic waves passing the cylinders whose axes are aligned perpendicular to the direction of propagation. In both cases the interaction between adjacent cylinders is taken into account by considering the effect of polygonal periodic boundary conditions. As these two models are linear they are combined to give the characteristics of propagation at arbitrary incidence. The third model involves propagation passing spheres in order to represent the joints. Heat transfer is also included. These three models are then used to expand the design space and calculate the optimum cell structure for desired acoustic performance in a number of different applications. Moreover, the application fields are also analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To further enhance the sound absorption of metal foams via combining the high sound absorption and good heat conductivity of the cellular foam metals, the use and acoustic modeling of these materials are reviewed. The predictions made by three viscous models developed by the authors for the propagation of sound through open-cell metal foams are compared with an experiment both for the metal foams and for the polymer substrates used to manufacture the foam. All models are valid in the limit of low Reynold's number which is valid for the typical cell dimensions found in metal foams provided the amplitude of the waves is below 160 dB. The first model considers the drag experienced by acoustic waves as they propagate passing rigid cylinders parallel to their axes, the second considers the propagation normal to their axes, and the third considers the propagation passing the spherical joints. All three are combined together to give a general model of the acoustic behavior of the foams. In particular, the sound absorption is found to be significant and well predicted by the combined model. In addition, a post-processing technique is described for the experiment used to extract the fundamental wave propagation characteristics of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. RESULTS: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. CONCLUSIONS: We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation. © 2013 Springer-Verlag Berlin Heidelberg.