1 resultado para CDR
em Cambridge University Engineering Department Publications Database
Resumo:
This study explores the stabilisation mechanisms of turbulent lifted flames by examining the scalar dissipation rate (SDR) of both passive and reactive scalars and their cross dissipation (CDR) in the stabilisation region. DNS results of a laboratory scale hydrogen turbulent lifted flame has been used for this analysis. Various definitions of the flame leading edge (FLE) has been compared and differences are illustrated. Time and spatial averaged statistic of SDR and CDR were examined. It was found that the averaged SDR for the mixture fraction at FLE was well below the reference quenching value for stoichiometric mixture. The averaged SDR for the progress variable is in the same order of the unstrained premixed laminar flame value. It was observed that the averaged CDR changed from negative to weakly positive at FLE. The change in sign was explained by a change in the relative alignment of the gradients of mixture fraction and progress variable. It was thus evident that the CDR was a good marker for stabilisation region and an important quantity in stabilisation mechanism.