21 resultados para CATHODES
em Cambridge University Engineering Department Publications Database
Resumo:
The fabrication of high current density nanofilament cathodes for microwave amplifiers was discussed. Metallic nanowires grown on silicon wafers and carbon nanotubes/nanofibers grown by catalytic plasma enhanced chemical vapor deposition (PECVD) were the two types of nanofilament arrays analyzed as cathodes materials. It was observed that the arrays of 5.8 μm height and 50 nm diameter carbon nanotubes exhibited geometrical enhancement factor of 240+-7.5%. The results show that carbon nanotubes/nanofibers arrays are best suited for nanofilament cathodes.
Resumo:
Cold cathodes based on carbon nanotubes (CNs) allow to produce a pulsed/directly modulated electron beam. Using an array of vertically aligned CNs that exhibit an aspect ratio of around 200, we demonstrated the modulation of a 1.5 A/cm2 beam at 1.5 GHz frequency. Such CN cathodes are very promising for their use in a new generation of compact and low cost microwave amplifiers that operates between 30 and 100 GHz. ©2005 IEEE.
Resumo:
Cold cathodes based on carbon nanotubes allow to produce a modulated electron beam. Using an array of vertically aligned CNs that exhibit an aspect ratio of about 200, we demonstrated the modulation of a high current density beam (∼ 1 A/cm2) at 1.5 and 32 GHz frequencies. Such CN cathodes are very promising for their use in a new generation of compact, highly efficient and low cost amplifiers that operate between 10 and 100 GHz. © 2007 IEEE.
Resumo:
We have studied two different kinds of electron tubes using a cold field emission cathode as the electron source. This cathode is an array of vertically aligned multiwall carbon nanotubes. The first device is a triode. With this device, we demonstrated the modulation at 32 GHZ of a 1.4 A/cm2 peak current density with a 82% modulation ratio. The second device is a traveling wave tube. For this device, the objective is to test a cathode delivering a 2 A/cm 2 electron beam. ©2009 IEEE.
Resumo:
The field emissions from three different types of carbon films are studied using a Kiethly voltage-current source-measure unit under computer control. The three types of carbon films are : 1) a-C:H:N deposited using an inductively coupled rf PECVD process, where the N content in the films can be as high as 30 at %; 2) cathodic arc deposited tetrahedral amorphous carbon with embedded regions of carbon nanotube and anion structures and 3) unoriented carbon nanotube films on a porous substrate. The films are formed by filtering a solution of nanotubes dispersed in alcohol through the pores and drying.
Resumo:
This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.
Resumo:
We report on the fabrication and field emission of carbon nanotube lateral field emitters. Due to its high aspect ratio and mechanical strength, we use vertically aligned multi-wall carbon nanotubes prepared by plasma-enhanced chemical vapour deposition as cathodes, which makes the fabrication of cantilever type lateral field emitters possible. The emission characteristics show that the field emission initiates at 11-17 V. The device has high geometrical enhancement factors (9.3 × 106 cm-1) compared to standard Spindt tips, which may be due to increased field concentration at the nanotube tip and the close proximity of the anode (<1 μm). The relative ease of fabrication compared to vertical field emitters and enhanced field emission characteristics observed makes the carbon nanotube lateral field emitter a good candidate for future integrated nano-electronic devices.
Resumo:
We report on the electrical characteristics of plasma enhanced chemical vapour deposition (PECVD)-grown, multi-walled carbon nanotube (MWCNT) devices made by a new fabrication method, PMMA suspended dispersion. This method makes it possible to suspend nanotubes between metal electrodes and to remove unwanted nanotubes from the substrate. The measurements show that the MWCNTs are metallic and able to maintain a current density ∼2×106 A/cm2 for more than 15 days with a maximum current density of ∼1.8×107 A/cm2. This high current density and reliability will make PECVD-grown MWCNTs applicable to field emission cathodes. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We demonstrate the production of integrated-gate nanocathodes which have a single carbon nanotube or silicon nanowire/whisker per gate aperture. The fabrication is based on a technologically scalable, self-alignment process in which a single lithographic step is used to define the gate, insulator, and emitter. The nanotube-based gated nanocathode array has a low turn-on voltage of 25 V and a peak current of 5 μA at 46 V, with a gate current of 10 nA (i.e., 99% transparency). These low operating voltage cathodes are potentially useful as electron sources for field emission displays or miniaturizing electron-based instrumentation.