6 resultados para Burton, Tirrell

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted investigating the interaction between a normal shock wave and a corner boundary layer in a constant area rectangular duct. Active corner suction and passive blowing were applied to manipulate the natural corner flows developing in the working section of the Cambridge University supersonic wind tunnel. In addition robust vane micro-vortex generators were applied to the corners of the working section. Experiments were conducted at Mach numbers of M∞=1.4 and 1.5. Flow visualisation was carried out through schlieren and surface oil flow, while static pressures were recorded via floor tappings. The results indicate that an interplay occurs between the corner flow and the centre line flow. It is believed that corner flow separation acts to induce a shock bifurcation, which in turn leads to a smearing of the adverse pressure gradient elsewhere. In addition the blockage effect from the corners was seen to result in a reacceleration of the subsonic post-shock flow. As a result manipulation of the corner regions allows a separated or attached centre line flow to be observed at the same Mach number. Copyright © 2010 by Babinsky, Burton, Bruce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments are conducted to examine the mechanisms behind the coupling between corner separation and separation away from the corner when holding a high-Machnumber M∞ = 1.5 normal shock in a rectangular channel. The ensuing shock wave interaction with the boundary layer on the wind tunnel floor and in the corners was studied using laser Doppler anemometry, Pitot probe traverses, pressure sensitive paint and flow visualization. The primary mechanism explaining the link between the corner separation size and the other areas of separation appears to be the generation of compression waves at the corner, which act to smear the adverse pressure gradient imposed upon other parts of the flow. Experimental results indicate that the alteration of the -region, which occurs in the supersonic portion of the shock wave/boundary layer interaction (SBLI), is more important than the generation of any blockage in the subsonic region downstream of the shock wave. © Copyright 2012 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments have been conducted to examine the mechanisms behind the coupling between corner separation and centreline separation when holding a normal shock in a rectangular channel. The study has focused on a M ∞ = 1.5 normal shock held in a wind tunnel with a parallel rectangular cross-section. The primary mechanism explaining the link between the corner separation size and the centreline separation appears to be the generation of compression waves which act to smear the adverse pressure gradient imposed upon other parts of the flow. In addition, the origin of the λ-foot leading leg appears to be depended upon the size of the corner separations. Experimental results indicate that the alteration of the λ-region, which occurs in the supersonic portion of the SBLI, is more important than the generation of any blockage in the subsonic region downstream of the shock wave. Copyright © 2012 by H. Babinsky, D.M.F. Burton.