3 resultados para Bull Run, 2nd Battle of, Va., 1862.
em Cambridge University Engineering Department Publications Database
Resumo:
Trying to pass someone walking toward you in a narrow corridor is a familiar example of a two-person motor game that requires coordination. In this study, we investigate coordination in sensorimotor tasks that correspond to classic coordination games with multiple Nash equilibria, such as "choosing sides," "stag hunt," "chicken," and "battle of sexes". In these tasks, subjects made reaching movements reflecting their continuously evolving "decisions" while they received a continuous payoff in the form of a resistive force counteracting their movements. Successful coordination required two subjects to "choose" the same Nash equilibrium in this force-payoff landscape within a single reach. We found that on the majority of trials coordination was achieved. Compared to the proportion of trials in which miscoordination occurred, successful coordination was characterized by several distinct features: an increased mutual information between the players' movement endpoints, an increased joint entropy during the movements, and by differences in the timing of the players' responses. Moreover, we found that the probability of successful coordination depends on the players' initial distance from the Nash equilibria. Our results suggest that two-person coordination arises naturally in motor interactions and is facilitated by favorable initial positions, stereotypical motor pattern, and differences in response times.
Resumo:
This paper presents a heterogeneous reconfigurable system for real-time applications applying particle filters. The system consists of an FPGA and a multi-threaded CPU. We propose a method to adapt the number of particles dynamically and utilise the run-time reconfigurability of the FPGA for reduced power and energy consumption. An application is developed which involves simultaneous mobile robot localisation and people tracking. It shows that the proposed adaptive particle filter can reduce up to 99% of computation time. Using run-time reconfiguration, we achieve 34% reduction in idle power and save 26-34% of system energy. Our proposed system is up to 7.39 times faster and 3.65 times more energy efficient than the Intel Xeon X5650 CPU with 12 threads, and 1.3 times faster and 2.13 times more energy efficient than an NVIDIA Tesla C2070 GPU. © 2013 Springer-Verlag.