4 resultados para Brownlee, W. C. (William Craig), 1784-1860.

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical model experiments on compensation grouting in sands were performed in two different setups (Cambridge and Delft). The effect of water-cement (w/c) ratio, bentonite content (b.c.) and injection rate on compensation efficiency was investigated. Results show a considerable drop in compensation efficiency resulted from reducing the soil density. Injection in dense sand (R.D. = 93%) resulted in efficiencies between 40-90%, whereas injection in medium-dense sand (R.D. = 60-75%) yielded in reduced efficiencies between 10-40%. When the w/c ratio increased from 0.5 to 1.5 for a given density (R.D. = 93%) and the b.c. of 4%, the compensation efficiency value decreased. Typical efficiencies were between 60% and 40-50% for w/c ratios of 0.5 and 1.5, respectively. The values of compensation and grout efficiencies were almost equal, suggesting that pressure filtration happens mainly during injection. Increasing the b.c. improved the compensation efficiency. When a higher b.c. of 12% to 14% was used, typical compensation efficiencies in dense sand were 78 and 90% for w/c ratios of 1.5 and 1.8 respectively. © 2012 Taylor & Francis Group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of reactive magnesia (MgO) as the binder in porous blocks demonstrated significant advantages due to its low production temperatures and ability to carbonate, leading to significant strengths. This paper investigates the enhancement of the carbonation process through different curing conditions: water to cement ratio (0.6-0.9), CO2 concentration (5-20%), curing duration (1-7 days), relative humidity (55-98%), and wet/dry cycling frequency (every 0-3 days), improving the carbonation potential through increased amounts of CO2 absorbed and enhanced mechanical performance. UCS results were supported with SEM, XRD, and HCl acid digestion analyses. The results show that CO2 concentrations as low as 5% can produce the required strengths after only 1 day. Drier mixes perform better in shorter curing durations, whereas larger w/c ratios are needed for continuous carbonation. Mixes subjected to 78% RH outperformed all the others, also highlighting the benefits of incorporating wet/dry cycling to induce carbonation. © 2014 Elsevier Ltd.