49 resultados para Broadcast irrigation
em Cambridge University Engineering Department Publications Database
Resumo:
A significant cost in obtaining acoustic training data is the generation of accurate transcriptions. For some sources close-caption data is available. This allows the use of lightly-supervised training techniques. However, for some sources and languages close-caption is not available. In these cases unsupervised training techniques must be used. This paper examines the use of unsupervised techniques for discriminative training. In unsupervised training automatic transcriptions from a recognition system are used for training. As these transcriptions may be errorful data selection may be useful. Two forms of selection are described, one to remove non-target language shows, the other to remove segments with low confidence. Experiments were carried out on a Mandarin transcriptions task. Two types of test data were considered, Broadcast News (BN) and Broadcast Conversations (BC). Results show that the gains from unsupervised discriminative training are highly dependent on the accuracy of the automatic transcriptions. © 2007 IEEE.
Discriminative language model adaptation for Mandarin broadcast speech transcription and translation
Resumo:
This paper investigates unsupervised test-time adaptation of language models (LM) using discriminative methods for a Mandarin broadcast speech transcription and translation task. A standard approach to adapt interpolated language models to is to optimize the component weights by minimizing the perplexity on supervision data. This is a widely made approximation for language modeling in automatic speech recognition (ASR) systems. For speech translation tasks, it is unclear whether a strong correlation still exists between perplexity and various forms of error cost functions in recognition and translation stages. The proposed minimum Bayes risk (MBR) based approach provides a flexible framework for unsupervised LM adaptation. It generalizes to a variety of forms of recognition and translation error metrics. LM adaptation is performed at the audio document level using either the character error rate (CER), or translation edit rate (TER) as the cost function. An efficient parameter estimation scheme using the extended Baum-Welch (EBW) algorithm is proposed. Experimental results on a state-of-the-art speech recognition and translation system are presented. The MBR adapted language models gave the best recognition and translation performance and reduced the TER score by up to 0.54% absolute. © 2007 IEEE.
Resumo:
This paper discusses the development of the CU-HTK Mandarin Broadcast News (BN) transcription system. The Mandarin BN task includes a significant amount of English data. Hence techniques have been investigated to allow the same system to handle both Mandarin and English by augmenting the Mandarin training sets with English acoustic and language model training data. A range of acoustic models were built including models based on Gaussianised features, speaker adaptive training and feature-space MPE. A multi-branch system architecture is described in which multiple acoustic model types, alternate phone sets and segmentations can be used in a system combination framework to generate the final output. The final system shows state-of-the-art performance over a range of test sets. ©2006 British Crown Copyright.
Discriminative language model adaptation for Mandarin broadcast speech transcription and translation